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Abstract—In this paper, we introduce the first published
planner to drive a car in dense, urban traffic using Inverse
Reinforcement Learning (IRL). Our planner, DriveIRL, gener-
ates a diverse set of trajectory proposals and scores them with a
learned model. The best trajectory is tracked by our self-driving
vehicle’s low-level controller. We train our trajectory scoring
model on a 500+ hour real-world dataset of expert driving
demonstrations in Las Vegas within the maximum entropy
IRL framework. DriveIRL’s benefits include: a simple design
due to only learning the trajectory scoring function, a flexible
and relatively interpretable feature engineering approach, and
strong real-world performance. We validated DriveIRL on the
Las Vegas Strip and demonstrated fully autonomous driving
in heavy traffic, including scenarios involving cut-ins, abrupt
braking by the lead vehicle, and hotel pickup/dropoff zones.
Our dataset, a part of nuPlan, has been released to the public
to help further research in this area.

Index Terms—ML-based Planning, Inverse Reinforcement
Learning, Real-World Deployment, Self-Driving, Autonomous
Vehicles, Urban Driving, Learning from Human Driving.

I. INTRODUCTION

Self-driving cars have been the focus of significant re-
search and development over the past decade. Some com-
panies are tantalizingly close to deploying a commercial
self-driving taxi service that would make urban transporta-
tion cheaper and safer. Progress in self-driving cars has
been largely driven by new datasets [1]–[4] that helped
fuel dramatic improvements in ML approaches to object
detection [5], [6] and motion forecasting [7]–[9]. However,
the critical motion planning and decision-making algorithms
that ultimately determine driving behavior have yet to see
similar benefits from machine learning.

Classical planning and decision-making algorithms for
self-driving cars rely heavily on hand-engineered compo-
nents [10]. Developers will typically hand-tune the scoring
function that determines which behaviors are desirable. Man-
ually adjusting features and weights is a painstaking process
with improvement in one area often causing unintended
regressions elsewhere. Our planner obviates the need to
craft detailed features or tune weights by learning these
components from expert demonstrations using a maximum
entropy IRL framework.

Our DriveIRL system uses simple and interpretable mod-
ules to do the relatively easy tasks of generating a diverse
set of ego trajectories and optionally checking that they
satisfy basic safety requirements. Careful construction of the

*Work done while at Motional.

Fig. 1. DriveIRL architecture. The learned scoring component is indicated
with a dotted boundary.

proposed trajectories ensures that they a) are dynamically
feasible, b) follow the route, c) satisfy assumptions from the
vehicle controller, and d) are diverse. The learning component
of our model focuses entirely on scoring these trajectories
based on expert demonstrations. Our formulation directs the
model capacity towards hard-to-specify nuances in behavior
(e.g., speed profiles, clearances) more than creating “nice”
trajectories and avoiding obviously unsafe behavior.

DriveIRL achieves strong real-world driving performance
on the Las Vegas Strip, a major thoroughfare which connects
many major hotels and casinos. Challenges include dense
traffic, aggressive cut-ins, erratic drivers, and busy passenger
pickup/dropoff zones near the hotels. We deployed DriveIRL
on a car which drove fully autonomously on the Strip in these
scenarios, showing the practical utility of our approach.

Our main contributions towards learning-based planning
for self-driving cars are:

• The first, to our knowledge, IRL-based planner to drive
a car in dense, urban traffic.

• A simple yet powerful architecture based on intuitive,
minimally hand-engineered features that 1) learns the
most-challenging-to-specify aspect of driving, 2) pro-
motes creativity in input design at the trajectory level,
and 3) lightens the engineering burden as the final
feature scores are learned automatically, a sharp contrast
to standard linear IRL-based methods that only learn
feature (importance) weights and rely on handcrafting
feature scores.

• Detailed evaluation of our planner on nuPlan, a real-
world dataset that has been released to the public.

II. RELATED WORK

Classical planning: Traditional approaches formulate the
planning problem as search over an appropriately constructed
graph (e.g., A*, RRT*, PRM*; [10], [11]) or trajectory op-
timization [10]. These methods often have strong theoretical

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 1544

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ics
 a

nd
 A

ut
om

at
io

n 
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IC
RA

48
89

1.
20

23
.1

01
60

44
9

Authorized licensed use limited to: Harvard Library. Downloaded on November 29,2024 at 20:37:23 UTC from IEEE Xplore.  Restrictions apply. 



guarantees on convergence to an optimal solution and are
relatively easy to interpret. However, the cost function that
defines desired behavior is often hand-engineered, and in
practice requires painstakingly detailed tuning.
Imitation learning (IL): IL methods attempt to directly
imitate the actions of an expert driver and have seen promis-
ing applications to self-driving cars pioneered by the work
of ALVINN [12]. More recently, an end-to-end policy was
learned from camera images for lane keeping [13].

A fundamental issue with IL is that there is a distribution
shift from training to deployment with small errors causing
the model to operate outside of its training data, which then
leads to larger errors. ChauffeurNet [14] uses behavioral
cloning with extensive data augmentation to mitigate the
distribution shift issue, and UrbanDriver [15] uses an offline
policy gradient method with closed-loop rollouts during train-
ing to automatically create appropriate data augmentation.
While data augmentation improves our performance, it is not
as critical since our trajectory generation mechanism can pull
the car towards the lane center.

Another related work by [16] learns a non-interpretable
temporal-spatio costmap over the environment to indirectly
score a set of procedurally generated trajectories. Our ap-
proach, in contrast, learns to score trajectories directly,
thereby avoiding the assumption of an additive spatial-
temporal costmap altogether. We also improve on trajectory
generation by guaranteeing map compliance and demonstrate
the effectiveness of our model on a vehicle in dense urban
traffic.

Another similar approach is that of [17], where a hybrid
model with a learned planner and an interpretable fallback
layer drives in San Francisco. Our IRL-based model is
simpler and less reliant on a fallback layer. Furthermore, the
recursive check of our safety filter is less conservative.
Reinforcement learning (RL): RL approaches learn a driv-
ing policy by optimizing a reward function. The standard
approach requires a simulator (e.g., CARLA; [18]) to update
the environment that the driving policy interacts with. There
have been a variety of approaches that have shown strong
performance in simulation [19], [20].

Real-world applications of RL for self-driving cars have
been rarer, likely due to the difficulty in modeling the
environment and specifying the reward function. An early
notable example is [21], where they learn a steering policy for
a real car. More recently, lane following was demonstrated
using deep RL [22]. This approach controlled both speed
and steering on a real car. We contrast the rural driving
evaluations above with our experiments in busy Las Vegas.
Inverse reinforcement learning (IRL): IRL methods assume
the expert is optimizing an unknown cost function that is
learnable from demonstrations. An early application of IRL
to self-driving cars was for parking lot navigation [23].
The method learned multiple different driving styles from
a handful of demonstrations. However, the environment was
static and the formulation assumed a linear combination of
carefully handcrafted features.

Our approach is based on the popular maximum en-
tropy formulation [24], which avoids ambiguities inherent

in matching feature expectations. The maximum entropy
IRL approach was extended to deep learning in [25], which
avoided the need for laborious hand-engineering of features,
and applied to simple benchmarks. The work of [26] is the
most related to our approach, but their model only learned a
dozen or so of feature (importance) weights and assumed
a linear combination of handcrafted features. In addition,
their method was only validated in simulation on a highway
driving dataset.

III. INVERSE REINFORCEMENT LEARNING PLANNER

In this section, we describe our Inverse Reinforcement
Learning (IRL) Planner as shown in Fig. 1. Our system
consists of three stages: trajectory generation (Sec. III-B),
an optional safety filtering step (Sec. III-C), and trajectory
scoring (Sec. III-D). We rely on simple and reliable hand-
engineered modules for trajectory generation and safety, and
focus on learning how to score trajectories.

A. Input and output
Input: We encode the environment around our self-driving
car using a mid-level representation. We assume that the ego
is localized within a high-definition map and that objects are
detected and tracked by a Perception system. Other road users
(e.g., cars, bicyclists, and pedestrians) are represented by
object type, an oriented bounding box, and speed. The high-
definition map provides lane center-lines, road boundaries,
traffic light locations, pedestrian crosswalks, speed limits,
and other semantic information. We also provide a route,
which indicates the lanes that the ego should traverse to make
progress towards its goal.

We refer to the scene context at a given timestamp as a)
the ego dynamic state S (oriented bounding box, speed),
b) the other road users U (type, oriented bounding box,
speed), c) the map M, and d) the ego’s desired route R. The
model receives the scene context at the current timestamp,
a specified number of previous timestamps (e.g., the past
1 s) as history H as well as world state forecasts P for a
specified number of future timestamps (e.g., up to 6 s) from
a prediction module.
Output: Our planner generates multiple ego trajectories and
scores each one according to how closely it matches the
ground truth. A trajectory is a sequence of future states of the
ego, where we assume that there is a fixed timestep between
all states. Let st = (x, y, ✓, v) represent a state at time t,
with position (x, y), heading ✓, and speed v. All values are
with respect to a fixed coordinate frame defined at the ego’s
geometric center from the starting timestamp. The trajectory
⌧ = s1⇥s2 . . .⇥st, where t is the planned time horizon, that
is ranked the best among a set of trajectories T , is used as
a reference for the vehicle’s tracking and actuator controller.

B. Trajectory generation
The trajectory generation module uses the scene context

to synthesize a diverse set of possible future motions for
the ego. Important considerations for the ego’s trajectory
are that it a) is dynamically feasible and b) satisfies all
requirements of the low-level tracking and actuator control
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Fig. 2. Proposed trajectories for the ego (red rectangle). Each trajectory is
shown in translucent white dot-line. Overlap is due to multiple acceleration
profiles. All trajectories follow the route.

(i.e., levels of continuity, minimum turn radius, minimum
acceleration from a stop). Secondary considerations are that
the trajectory is compliant with the map (e.g., it stays on the
road). While these considerations do not preclude using a
learned trajectory generation module, we found that a simple
hand-engineered trajectory generator can easily satisfy the
considerations above.

The trajectory generator uses i) the current ego state S ,
ii) the route R, and iii) the map M to create a diverse
set of ego trajectories T , namely (S,R,M) 7! T . The
generator integrates a desired acceleration profile along the
route ahead of the ego. In our experiments, we specified a
range of constant acceleration profiles ranging from a firm
brake (�5.0 m/s2) to a moderate acceleration (1.5 m/s2).
As the ego will not always be on the lane center-line (due to
vehicle controller tracking errors), we smoothly connect the
initial ego pose with the route with Dubins paths [11] where
turning radii are a fixed set of parameters. In a typical scene,
the trajectory generator usually creates 50-150 trajectories
depending on the ego state and route. Some examples are
shown in the Fig 2.

C. Safety filter

Our framework supports the application of an optional
interpretable safety filter before the trajectory scoring step.
The filtering is based on: 1) a set of conservative world
assumptions used to predict the behavior of non-ego road
users, 2) a set of trajectory modifiers which are applied to
the ego trajectory, and 3) a set of safety checks which the
modified ego trajectory needs to pass. The safety filter is
similar in spirit to the fallback layer proposed by [17], except
that 1) it directly filters the proposed trajectories, rather than
projecting the output trajectory to a safe set, and 2) the
trajectory modifier effectively implements a recursive safety
guarantee: if we execute the first 1 s of a trajectory, can we
remain safe by firmly decelerating after?

D. Trajectory scoring with maximum entropy IRL

Appropriately scoring trajectories is the core challenge of
our planning approach. This difficulty arises because proper
driving behavior is heavily influenced by the environment
around us, including the behavior and goals of other road
users, of which we only have a partial understanding.

Trajectories are scored by a deep neural network trained
with a maximum entropy IRL loss [24]. We use expert
demonstrations collected from a skilled human driving our
vehicle. The loss favors trajectories that most closely match

the expert demonstration ⌧? (in feature space). In particular,
let r(⌧) represent the reward of trajectory ⌧ 2 T . The
probability of a trajectory ⌧⇤ being selected according to the
maximum entropy principle is P (⌧?) = exp r(⌧?)P

⌧2T
exp r(⌧) .

The negative log-likelihood loss (NLL) on a dataset D
is defined as `(D) = �

P
d2D

logP (⌧?(d)) where ⌧?(d) is

the demonstrated trajectory on token d 2 D. To address
data imbalance issues, we augment NLL with focal loss [27]
(using a � of 2.0)

`(D) = �

X

d2D

(1� P (⌧?(d)))� logP (⌧?(d)). (1)

Features: We compute features for each proposed trajectory
to use as inputs to our neural network. These features
can be based on any combination of a proposed trajectory
⌧ , ego state S , other road users U , the map M, route
R, the history H, and the predictions P , meaning that
Fi(⌧,S,U ,M,R,H,P) ! fi 2 Rki , where Fi is the feature
(extraction) function corresponding to feature i and ki is its
dimension. Below is a description of the features included
in our base model (we have used k to denote the sequence
concatenation operation).

• Time-to-collision (TTC): the minimum number of sec-
onds before the ego would collide with another road
user in the (predicted) future. Specifically, FTTC :
(⌧,S,U ,M,P) 7! (f col

1 , . . . , f col
T ) where f col

t denotes
the minimum time to collision at timestamp t.

• ACCInfo: the ego speed, its distance to the road user
ahead, the speed of the road user ahead, and the relative
speed of the road user ahead. The feature function is
FACCInfo : (⌧,S,U ,M,P) 7! f acc

1 k. . .kf acc
T with f acc

t ,
(dahead, bahead, vego, vahead, vego � vahead)t where dahead is
the distance to the track ahead, bahead is a Boolean flag
indicating if there is a track in front within a tunable
distance (defaulted to 20m), vego and vahead are the speed
of the ego and the track ahead, respectively.

• MaxJerk: the maximum jerk (m/s3) along the trajectory
where FMaxJerk : (⌧,H) 7! f jerk

k (jmax) where f jerk is
a thresholded Boolean encoding of the maximum jerk
value jmax in the proposed trajectory.

• MaxLateralAccel: the max lateral acceleration (m/s2)
along the trajectory. FMaxLateralAccel is defined analo-
gously to the MaxJerk feature above.

• PastCoupling: concatenation of the proposed and past
ego poses in the local frame of reference, to encourage
the model to maintain coherence between the past,
present, and future states. Specifically, FPastCoupling :
(⌧,H) 7! f coup

1 k . . . k f coup
T where f coup

t is the five-
tuple (xego, yego, ✓ego, vego, aego)t denoting the ego state
and acceleration at timestamp t.

• SpeedLimit: how closely the trajectory obeys the speed
limit. FSpeedLimit : (⌧,S,M) 7! f limit

1 k . . . k f limit
T

where f limit
t , ( vego�vlimit

vlimit
, blimit)t with vlimit being the

current speed limit and blimit a Boolean flag that indicates
whether the speed limit is exceeded.
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Motion prediction: Decoupling prediction from planning
to enable studying each system separately and to keep the
presentation of DriveIRL simple and self-contained, we use
an Intelligent Driver Model (IDM) [28] as our prediction
model for other cars (with a conservative acceleration value to
avoid assuming that stationary vehicles will speed up) and a
constant velocity model for pedestrians and vehicles without
a nearby lane.
Model architecture: To score a proposed trajectory, we
adopt the architecture illustrated in Fig. 3 in which the
extracted features are processed separately before interacting
with one another through a masked self-attention mechanism.
Specifically, each input feature fi, as a temporal sequence
of vehicle-environment interaction data, is first normalized
via a BatchNorm1D layer before being fed to an LSTM
module with 1 layer and a hidden size of 20. The output
of the LSTM becomes the input to a feed-forward module
followed by a self-attention mechanism with 2 heads and an
embedding dimension of 120. Here we employ zero-masking
of the queries to encode position. By taking into account
other features through self-attention, the model produces
for each feature a “corrected” output embedding that is
converted to a scalar by a feed-forward network which is
then tanh activated to produce a score yi 2 (�1, 1). The
final score for the proposal is the dot product of these feature
scores and the corresponding feature importance weights wi:
r(⌧) =

P
i
wiyi. In total, our base (best) model has ⇡ 88, 700

trainable parameters.

IV. EXPERIMENTS

DriveIRL was evaluated on the dataset described in
Sec IV-A. The metrics for comparison are explained in Sec
IV-B. Various model ablation studies and a comparison with
baselines are shown in Sec IV-C IV-D while simulation and
real-world driving results are provided in Sec IV-E and IV-F.

A. Dataset
We created a self-driving car dataset that captures real-

world urban driving in the center of Las Vegas. Our dataset
is a part of the nuPlan [29] dataset that has been made
public. It includes object annotations and high-definition
maps. Vehicles, pedestrians, and bicyclists are automatically
annotated using an offline perception system (similar in spirit
to [30]) and viewed as ground truth. We performed filtering
and extracted 182, 032 scenarios, each 11 s in duration (1 s
past, 10 s future), for a total of approximately 556 h. Our
main interest in deployment was to learn good adaptive cruise
control (ACC) as well as turning (protected and unprotected)
behaviors. Thus, we filtered out scenarios where the ego made
lane changes or deviated far from the lane. After filtering,
we performed a 3:1:1 split for train, val, and test sets. Tab. I
shows a detailed distribution of our dataset by scenario tags.

B. Metrics
We perform evaluation using a variety of metrics to give

a full picture of driving. For reproducibility, we approximate
the environment by a closed-loop replay for each 10 s sce-
nario. From the initial scene context, we compute a planned

TABLE I
A BREAKDOWN BY SCENARIO TAGS OF OUR DATASET OF 182, 032

11 s-SCENARIOS (ASV STANDS FOR APPROACHING STOPPED VEHICLE).

Tags Straight Right Left Stopped Slow Intersection Close ASV

Scenarios 163.1k 1.5k 2.6k 53.6k 37.4k 28.2k 11.2k 15.3k
Ratio 89.6% 0.8% 1.4% 29.4% 20.6% 15.5% 6.2% 8.4%

ego trajectory, move along that trajectory for one step of
0.2 s, replay the other agents, update the scene context, and
repeat. Then, we compute metrics on the resulting executed
trajectory as averages over the full 10 s.

We have three high level metrics which are Boolean
functions of “low level” ones. These are 1) Safety: a function
of collision, off-road driving, tailgating and minimum time
to collision, 2) Comfort: a function of acceleration, jerk and
yaw rate, 3) Progress: a function of progress made along the
route and deviation from it. We also compute an error metric
based on a weighted sum of the `2 xy-error and the heading
error averaged over the duration of the trajectory. The weight
on the heading error is chosen to be 2.5, we refer to this
metric as `2 with yaw. We note that since other vehicles do
not react to the ego during the replay rollouts (e.g., if we
drive slower than the expert in the data), the overall “Safety”
score is really a lower bound on safety.

C. Model ablations

The ablation experiments below illustrate the importance
of the chosen features, architecture, data augmentation, and
the loss function in our model. In these experiments, we
use a batch size of 64 and an Adam optimizer with an
initial learning rate of 10�3. Additionally, we use a “cosine
annealing with warm restarts” scheduler, which gradually
lowers the learning rate to a minimum of 10�4 and resets
it every 7 epochs. All models are trained over 20 epochs on
eight AWS g4dn-metal instances with eight 16 GB NVIDIA
Tesla T4 GPUs each. Because closed-loop simulation and
metrics evaluation are computationally expensive, we ran-
domly sampled 1, 000 scenarios from our evaluation set for
ablation studies and 3, 000 scenarios from the test set for the
final performance evaluation against other baselines. Training
and closed-loop metrics evaluation takes about an hour per
epoch.
Feature importance: To understand the importance of each
hand-engineered feature, an ablation study is conducted and
summarized in Tab. II. The contribution of each feature is
studied by dropping one of them out at a time. We observe
that all features are important because the Base model which
includes them receives the highest scores across all high-level
metrics and has the lowest Collision rate. Even though the `2
error is a bit higher compared to No MaxJerk, the 0.089m
difference is not significant in the qualitative results. The
results also demonstrate the importance of the PastCoupling
feature in ensuring Comfort and show that the TTC feature
significantly reduced the collision rate.
Data augmentation: As the reference trajectory is never
followed perfectly by the vehicle, errors can accumulate. We
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Fig. 3. Detailed trajectory scoring architecture.

TABLE II
ABLATION STUDY ON THE IMPORTANCE OF EACH FEATURE. THE ROW
INDICATES THE FEATURE REMOVED FROM THE BASELINE MODEL. SEE

SEC. III-D FOR DEFINITIONS.

Model Safety Comfort Progress `2 w/ yaw Collision Tailgate

Base (ours) 0.925 0.840 0.988 2.290 0.001 0.015
No TTC 0.865 0.790 0.958 2.679 0.055 0.070
No ACCInfo 0.862 0.817 0.959 2.832 0.004 0.035
No MaxJerk 0.863 0.825 0.960 2.201 0.001 0.029
No MaxLatAccel 0.917 0.821 0.982 2.299 0.005 0.011
No PastCoupling 0.901 0.697 0.979 2.905 0.005 0.011
No SpeedLimit 0.881 0.809 0.987 2.483 0.002 0.028

TABLE III
COMPARISON BETWEEN DIFFERENT AUGMENTATION SCHEMES.

Model Safety Comfort Progress `2 w/ yaw Collision Tailgate

Base (low noise) 0.925 0.840 0.988 2.290 0.001 0.015
No noise 0.850 0.850 0.956 2.289 0.005 0.055
High noise 0.917 0.845 0.986 2.525 0.002 0.016
Low past + present 0.921 0.817 0.982 2.302 0.005 0.019

augment the data by perturbing the ego’s initial state during
training to reduce sensitivity to such errors. For our low noise
baseline, we use zero-mean Gaussian data augmentation for
longitudinal offset (1.2m std), lateral offset (0.8m std),
heading offset (0.1 rad std), and velocity (0.1m s�1 std). For
the high noise ablation, we respectively use 2.5m std, 1.5m
std, 0.3 rad std, and 0.2m s�1 std. The velocity is clamped
to prevent it from being negative.
Architecture: We performed several ablations on the model
architecture before settling on one described in Sec III-D. We
show in Tab. IV that the other two extremes, namely, concate-
nating all input features and using them as one monolithic
feature in a single feedforward network or siloing all input
features (not allowing any interaction) both result in inferior
performance. It may also be seen that input normalization
and attention input masking are beneficial.
Loss: Tab. V shows that it is better to maximize the probabil-

TABLE IV
COMPARISON BETWEEN DIFFERENT MODEL ARCHITECTURES.

Model Safety Comfort Progress `2 w/ yaw Collision Tailgate

Base (ours) 0.925 0.840 0.988 2.290 0.001 0.015
Monofeature FC 0.816 0.715 0.922 3.084 0.009 0.020
Siloed FC 0.900 0.784 0.964 2.394 0.018 0.021
No input norm 0.880 0.817 0.957 2.496 0.003 0.016
Attention no masking 0.910 0.835 0.983 2.285 0.004 0.012

TABLE V
COMPARISON BETWEEN DIFFERENT LOSS FUNCTIONS.

Metric Safety Comfort Progress `2 w/ yaw Collision Tailgate

Base (ours) 0.925 0.840 0.988 2.290 0.001 0.015
GT demo 0.910 0.553 0.992 2.870 0.012 0.029
Unsafe demo 0.873 0.823 0.977 2.518 0.036 0.049
Weighted yaw demo 0.932 0.839 0.984 2.530 0.005 0.018
Without focal loss 0.910 0.831 0.976 2.393 0.004 0.018

TABLE VI
BASELINES ON THE TEST SET. IDM = INTELLIGENT DRIVER MODEL.

CS = CONSTANT SPEED.

Metric Safe Comfort Progress `2 w/ yaw Collision Tailgate

Expert 1.000 0.984 1.000 0.000 0.000 0.000

Base (ours) 0.916 0.830 0.986 2.351 0.003 0.017
Base + Safety (ours) 0.930 0.815 0.971 2.204 0.001 0.006
IDM 0.891 0.898 0.987 4.478 0.005 0.019
CS lane follow 0.669 0.992 0.902 3.963 0.161 0.166

ity of the `2 projection of the ground truth onto the trajectory
set instead of the ground truth itself. This is expected as
the ground truth comes from a different distribution than
the proposals in addition to being unavailable at inference
time. Filtering possibly unsafe trajectories from the set before
finding the ground truth projection is also crucial to obtaining
a safe model. Doing the projection using the average `2 norm
instead of an `2 norm with a yaw error penalty also seems
preferable. Lastly from the same table, we can see that using
focal loss as in Equation (1) improves performance. Further
experiments comparing using focal loss against manually
balancing datasets also favor former’s effectiveness.

D. Baselines

We evaluate our model on a test dataset and compare it
with an Intelligent Driver Model (IDM) [28] and a constant
speed (CS) lane follow model. The IDM baseline is a well-
known version of an expert planner that focuses on adaptive

TABLE VII
EVALUATION IN NUPLAN. IDM = INTELLIGENT DRIVER MODEL.
SAFETYNET* = SAFETYNET [17] WITHOUT FALLBACK LAYER.

Metric Score Collision Comfort Progress `2 w/ yaw DrivableArea

Expert 0.965 0.995 0.960 1.000 0.00 0.992

Base (ours) 0.803 0.955 0.906 0.953 8.67 0.992
IDM 0.775 0.861 0.842 0.999 8.83 0.992
SafetyNet* 0.655 0.986 0.974 0.907 23.36 0.799
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(a) Ego starting from a stop. (b) Ego stopping for the lead vehicle. (c) Adaptive cruise control. (d) A moderate cut-in.
Fig. 4. Qualitative driving performance in common scenarios.

Fig. 5. Smoothly stopping behind a vehicle in dense traffic on the Las Vegas Strip.

cruise control while the CS model is a simple lower-bound.
The results are shown in Tab. VI. Our base model with the
safety filter outperforms others in all safety related metrics.
Without the safety filter, our base model still outperforms
the IDM baseline, with a significantly lower `2 error, im-
plying that our model resembles the human expert more.
Furthermore, the base model also has higher scores in all
safety related metrics in both high- and low-level scores like
collision and tailgate rates.

As shown in Tab. VII, we also evaluate DriveIRL (with no
safety filter) in the nuPlan framework against the IDM and
SafetyNet*, which is an implementation of SafetyNet without
the fallback layer. The evaluation is done on 1, 000 random
20-second Las Vegas test scenarios using closed-loop nonre-
active agents. Our model surpasses both in the default nuPlan
score (computed from multiple safety, comfort, and progress
related metrics), weighted `2 error, and DrivableArea metric.
SafetyNet* is found to be overly conservative in dense areas,
as evidenced by its lower Progress score. It also tends to
depart from lanes onto empty non-drivable areas, resulting
in a high `2 error and a lower collision rate (high Collision
score). In contrast, our model has high scores in all important
metrics, consistent with its having the best overall score.

E. Simulation results

Fig. 4 exhibits some qualitative closed-loop simulation
results of our planner driving in typical scenarios. These
scenarios are shown as a sequence of snapshots over 10 s
rollouts. The ego vehicle is shown as a red rectangle, the
expert vehicle is in blue, and other vehicles are in yellow.
The orange line is the planned route and the purple circles
represent the planned trajectory for the next 6 s.

F. Real-world driving

Prior to deploying on public roads, DriveIRL was rig-
orously tested in both simulation and private routes. The
simulation tests consist of the same Las Vegas Strip route
that was our deployment goal, and involve a high-fidelity
model for the ego vehicle and numerous actors exhibiting a
wide variety of behaviors. When deployed on the Strip, the

vehicle was piloted by a vehicle operator who was trained to
take over for unsafe behavior and situations outside of our
operating domain, including construction zones, bus stops,
and yielding for emergency vehicles. On the Strip, our plan-
ner handled heavy traffic, aggressive cut-ins, unpredictable
drivers, and busy passenger pick-up/drop-off zones near the
hotels and casinos. Without the safety filter, the vehicle
remained in autonomous mode for 8.8 miles of the 11-mile
route. Overrides occurred for mandatory takeover regions
and twice for undesired behavior. With the safety filter, the
vehicle remained in autonomous mode for 6.9 of 8.5 miles,
with takeovers only occurring due to mandatory takeover
regions. Fig. 5 shows a typical maneuver where our self-
driving vehicle smoothly stops for a vehicle ahead while
surrounded by multiple vehicles.

V. CONCLUSIONS

We introduced DriveIRL: the first planner, to our knowl-
edge, to drive a car in dense, urban traffic using inverse
reinforcement learning. By designing an architecture split
into ego trajectory generation, checking, and scoring, we
were able to leverage relatively easy and reliable methods of
trajectory generation and safety checking. This architecture
allowed the trajectory scoring component of our system to
focus on learning important nuanced driving behavior in
dense traffic. We demonstrated our planner on the busy Las
Vegas Strip, where it showed strong real-world performance
on challenging scenarios such as cut-ins, abrupt braking,
and cluttered hotel pickup/dropoff zones. While this work
is aimed at showcasing the strength of simple handcrafted
features, our approach does not precluding mixing them with
learned features, which along with a deeper architecture and
a learnable trajectory set are fair topics for future research.
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