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SUMMARY
Humans learn internal models of the world that support planning and generalization in complex environ-
ments. Yet it remains unclear how such internal models are represented and learned in the brain. We
approach this question using theory-based reinforcement learning, a strong form of model-based reinforce-
ment learning in which themodel is a kind of intuitive theory. We analyzed fMRI data from human participants
learning to play Atari-style games. We found evidence of theory representations in prefrontal cortex and of
theory updating in prefrontal cortex, occipital cortex, and fusiform gyrus. Theory updates coincided with
transient strengthening of theory representations. Effective connectivity during theory updating suggests
that information flows from prefrontal theory-coding regions to posterior theory-updating regions. Together,
our results are consistent with a neural architecture in which top-down theory representations originating in
prefrontal regions shape sensory predictions in visual areas, where factored theory prediction errors are
computed and trigger bottom-up updates of the theory.
INTRODUCTION

Reinforcement learning (RL) is a normative framework prescrib-

ing how agents ought to act in order to maximize rewards in the

environment.1 In the field of artificial intelligence, RL has allowed

artificial agents to reach and surpass human-level performance

across a variety of domains previously beyond the capabilities

of computers.2–5 In the fields of psychology and neuroscience,

RL has offered a compelling account of behavioral and brain

data across a number of species and experimental para-

digms.6–9 Most of this work has focused on model-free RL, a

kind of RL in which the agent directly learns a mapping from

different states in the environment to actions and/or values.

Model-based RL, on the other hand, posits that the agent learns

an internal model of the environment, which is used to simulate

the outcomes of different actions. Behavioral and neural studies

have found evidence for both kinds of RL,10–13 yet model-based

RL has received relatively less attention and is often studied us-

ing simple toy environments with small state spaces. This is

largely owing to the relative scarcity of powerful model-based

RL algorithms capable of matching human learning in complex

domains,14 leaving open the question of what the ‘‘model’’ in

model-based RL is and how it is learned and represented by

the brain.

One possible answer from cognitive science is theory-based

RL,15–17 a strong form of model-based RL in which the model

is an intuitive theory—an abstract causal model of world dy-
namics rooted in core cognitive concepts such as physical ob-

jects, intentional agents, relations, and goals (Figure 1). Building

on findings in developmental psychology, theory-based RL

posits that the agent learns the theory from experience using

probabilistic inference and uses it together with an internal simu-

lator to predict and evaluate the outcomes of different action se-

quences generated by an internal planner. Theory-based RL has

captured patterns of human learning,16,17 exploration,16 and

generalization15 in complex domains where model-free and

simpler model-based RL approaches fail or learn rather differ-

ently. This has provided strong support for theory-based RL as

a concrete realization of human model-based RL.

Building on this work, our study aims to identify brain regions

involved in theory-based RL and how they map to its constituent

processes. To achieve this, we used a particular formalization of

theory-based RL16 to analyze functional magnetic resonance im-

aging (fMRI) data collected from human participants while they

learned to play Atari-style games designed to mirror some of

the richness and complexity of real-world tasks. Our analyses re-

vealed evidence that theory representations in inferior frontal gy-

rus (IFG) and other prefrontal regions are activated and updated

in response to theory prediction errors—discrepancies between

theoretical predictions and actual observations—which are in

turn computed in occipital and ventral stream regions such as

the fusiform gyrus (FFG). We also found evidence that, much

like in our theory-based RL model, theory updating in the brain

is factored into updating of objects, relations, and goals,
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Figure 1. EMPA architecture
Symbolic descriptions of game frames are fed to an inference engine which updates themost-likely theory, q�, using an approximation of Bayesian inference. The

theory consists of objects (sprites), relations (interactions), and goals (termination conditions). Exploitative (win) and exploratory goals based on the theory are fed

to a planner which uses a theory-based internal simulator and an intrinsic reward function to search for rewarding action sequences. The agent then takes actions

in the environment according to the best plan. Reused with permission from Tsividis et al.16
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suggesting key differences between these cognitive compo-

nents. Finally, analyses of effective connectivity suggest that

theory inference involves both feedforward and feedback pro-

cessing reminiscent of hierarchical predictive coding.18,19

Together, these results present the first direct evidence for the-

ory-based RL in the brain and establish a foundation for under-

standing its underlying neural processes.

RESULTS

We scanned 32 human participants using fMRI while they played

six Atari-style games (Figure 2A; Table S4). Each game had nine

levels of increasing complexity and had to be learned from expe-

rience, without any visual hints or prior information about the

rules. For data analysis purposes, games were interleaved and

balanced across pairs of runs (Figure 2B).

As a particular instantiation of theory-based RL, we used the

explore, model, plan agent (EMPA; Figure 1) proposed by Tsivi-

dis et al.16 Theories are formalized as symbolic, probabilistic pro-

gram-like descriptions of game dynamics that specify the

different object kinds, the outcomes of interactions between

them, and the win/loss conditions. EMPA performs Bayesian

inference over the space of theories and uses themost likely the-
1332 Neuron 111, 1331–1344, April 19, 2023
ory to run internal simulations and search for rewarding action

sequences. Tsividis et al.16 showed that EMPA exhibits hu-

man-level learning efficiency in a large suite of Atari-style games,

including those used in our study. They also showed that EMPA

exhibits human-like object-oriented exploratory behaviors. In

contrast, model-free RL agents failed on both counts, learning

orders of magnitude more slowly and exploring much more

randomly than humans.

Consistent with these results, we found that EMPA performed

similarly to our participants (Figure 2C; no significant difference,

two-sided Wilcoxon rank-sum test based on simulated and

actual expected bonus payouts), while both humans and

EMPA performed significantly better than a pretrained deep RL

network, the double DQN (DDQN; p< 10� 10), a powerful

model-free RL algorithm,20 variants of which have been put for-

ward as accounts of humanmodel-free RL in complex domains.9

Consistent with Tsividis et al.’s16 results, we also found

that EMPA learned at a rate similar to humans (Figure S1A;

tð30Þ = 1:5;p = 0:13, two-sample t test of fitted linear coeffi-

cients), while the DDQN learned significantly more slowly

(tð30Þ = 3:9; p = 0:0005). Ablations to the intrinsic rewards,

planner, and exploration components of EMPA revealed

that intrinsic rewards are critical for this effect (tð30Þ = 4:1;
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Figure 2. Study design and behavioral re-

sults

(A) Participants played different Atari-style games.

The game names, colors, and textures shownwere

randomized for each participant and were unre-

lated to the game rules (but were consistent across

different levels of the same game for each partici-

pant).

(B) Example scan session for single participant.

Runs were paired into balanced data partitions,

with blocks shuffled within each partition. See also

Table S4.

(C) Behavioral results from participants (green) and

generative play by EMPA (blue) and pretrained

DDQN (red). Each colored dot represents a single

real or simulated participant, respectively. White

dots depict medians, box plots depict upper and

lower quartiles, horizontal lines across kernel

density estimates depict means. ns, not significant,

**********p< 10� 10 (two-sided Wilcoxon rank-sum

test). See also Figure S1.
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p = 0:0003), while planner optimizations (tð30Þ = 1:5;p = 0:15)

and theory-driven exploration (tð30Þ = 1:0; p = 0:33) may be

less critical, at least in our design. All of our subsequent neural

analyses are based exclusively on EMPA theory learning from

human gameplay and thus do not rely on any of these compo-

nents. For a thorough comparison between the behavior of hu-

mans, EMPA, different ablations of EMPA, and different deep

RL models, refer to Tsividis et al.16

Theory representations in prefrontal cortex
The central component of theory-based RL is the theory that

the agent continuously infers from experience. To identify brain

regions representing the inferred theory, we replayed each par-

ticipant’s gameplay through EMPA and used the inferred theory

sequences to predict the blood-oxygen-level-dependent

(BOLD) signal in each voxel using a linear encoding model fit

with Gaussian process (GP) regression (Figure 3A), a general-

ization of the more commonly used ridge regression.21 In order

to embed the symbolic theories in a vector space for the en-

coding model, we used holographic reduced representations22

(HRRs), a method for encoding complex compositional struc-

ture in distributed form. Similarly to previous work,9,23 we

correlated the cross-validated predicted and actual BOLD

time courses; we then Fisher-z-transformed the resulting Pear-

son correlation coefficients to compute a predictivity score for

each voxel. Predictivity scores were aggregated across partic-

ipants using t tests. The resulting group-level t-maps were

thresholded at p< 0:001 and whole-brain cluster family-wise er-

ror (FWE) corrected at a = 0:05. This revealed significant pre-

dictivity scores across a distributed bilateral network of regions

(Figures 3B, S4A, and S4B; Table S1). In prefrontal cortex, we

found bilateral clusters in IFG, as well as unilateral clusters in

middle (MFG) and superior frontal gyrus (SFG) and the supple-

mentary motor area. In posterior areas, we found a large bilat-

eral cluster, starting from early visual regions in occipital cortex,

extending into higher visual regions and then further into the

ventral and dorsal streams, including FFG and middle temporal
gyrus in temporal cortex, and inferior parietal gyrus and angular

gyrus in parietal cortex.

We performed the same analysis using three control models9:

DDQN agents pretrained on corresponding games to control for

model-free RL representations (also used as a behavioral control

in Tsividis et al.16), principal component analysis (PCA) to control

for low-level visual features,24,25 and a variational autoencoder

(VAE) to account for high-level visual and state features.26–28

Similar to Cross et al.,9 we compared models using a posteriori

bilateral anatomical regions of interest (ROIs) based on cross-

referencing the t-maps from all models with the automated

anatomical labeling atlas29 (AAL3 atlas). We compared models

separately in each ROI based on the fraction of voxels with a sig-

nificant correlation (a = 0:05) between predicted and actual

BOLD signal. In prefrontal regions, EMPA largely outperformed

all three control models (Figures 3C, S4A, and S4B), specifically

in the triangular and opercular parts of IFG, aswell as inMFG and

SFG. Additionally, EMPA outperformed all three control models

in middle temporal gyrus. A two-way ANOVA with model and

ROI group as factors in a 4 3 4 design (Figure S4B) revealed a

significant interaction between the effects of model and ROI

group (Fð9;496Þ = 4:5;p< 10� 5, two-way ANOVA), with signifi-

cant simplemain effects both for model (p< 10� 8) and ROI group

(p< 10� 8). This suggests that the effects of theory representation

in those regions are not simply due to visual or model-free RL

confounds.

In order to probe which aspects of the EMPA theory drive the

encoding model results, we repeated the analysis using different

components of the theory—objects, relations, and goals—but

did not find any systematic differences (Figure S4C). We also

repeated the theory analysis using simplified object embeddings

in which every object has a single approach/avoid feature. We

found that this improved predictivity across cortex (Figure S4H),

pointing to a more parsimonious, action-related representation

of objects than the one used by EMPA.30

In order to refute the possibility that the encoding model re-

sults are simply due to variance between games, we repeated
Neuron 111, 1331–1344, April 19, 2023 1333
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Figure 3. Theory representations map to regions in prefrontal cortex and ventral/dorsal streams

(A) Encoding model analysis pipeline. State-action sequences (ða1; s1Þ; ðs2; a2Þ; ðs3; a3Þ; .) from human gameplay were replayed through EMPA. Inferred

theory sequences (q1; q2; q3;.) were embedded in a vector space, convolved with the hemodynamic response function, and subsampled to get feature

vectors (x1;x2;x3;.). Preprocessed BOLD signal from each voxel (y1;y2;y3;.) was regressed onto feature vectors using GP regression. Resulting predictivity

scores z were aggregated across participants using two-sided t tests. Resulting t-maps were thresholded at p< 0:001 and whole-brain cluster FWE corrected

at a = 0:05. Analogous analyses were performed with control models (DDQN, PCA, and VAE). See also Figures S1 and S2.

(B) Group-level t-maps from (A). ROIs are noted as IFGtriang, inferior frontal gyrus, triangular part; IFGoperc, inferior frontal gyrus, opercular part; MFG, middle

frontal gyrus; SFG, superior frontal gyrus; PreCG, precentral gyrus; SMA, supplementary motor area; PoCG, postcentral gyrus; IPG, inferior parietal gyrus; AG,

angular gyrus; SMG, supramarginal gyrus; ROL, rolandic operculum; PCUN, precuneus; IOG, inferior orbital gyrus; MOG, middle orbital gyrus; SOG, superior

orbital gyrus, FFG, fusiform gyrus; MTG, middle temporal gyrus; LING, lingual gyrus; CAL, calcarine fissure; CUN, cuneus. See also Figure S3 and Table S1.

(C) Fraction of voxels with significant correlation (a = 0:05) between predicted and actual BOLD in anatomical ROIs, aggregated across participants. Medians

with boxes representing top and bottom participant quartiles andwhiskers representing data range, excluding outliers (outliers plotted in Figure S4A and included

in all statistical tests). *p< 0:05, **p< 0:01, ***p< 0:001, ****p< 0:0001 (two-sided Wilcoxon signed rank tests). See also Figure S4.
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the analysis for each game separately and averaged the results

across games.We found that EMPA still outperformed all control

models in prefrontal cortex (Figure S4D), indicating that these re-

sults are not merely due to game differences unrelated to theory

learning, such as different sensory properties or sensorimotor

contingencies. To investigate whether there are any systematic

differences in theory encoding between games, we repeated

this analysis for games that require more planning and games

that require less planning. EMPA outperformed all control

models in prefrontal cortex for games that require more

planning (Figure S4E), but not for games that require less

planning (Figure S4F). A direct comparison revealed stronger

theory encoding in prefrontal cortex for games that require

more planning compared with games that require less planning

(Figure S4G).

Theory update signals in inferior frontal gyrus, occipital
gyri, and fusiform gyrus
After identifying regions representing the inferred theory, we next

sought to identify brain regions involved in theory inference.

Based on our previous work,31 we reasoned that such regions

might show greater activity during theory updating, reflecting

the temporary increase in computational demands. Because

theory updates are triggered by surprising events which violate

theoretical predictions, such an increase in neural activity could

also be interpreted as a kind of theory prediction error.We used a

general linear model (GLM) with impulse regressors at theory up-

date events—frames at which EMPA switched from one most

likely theory to another based on the participant’s gameplay

(Figures 4A and S5; Table S2). The group-level contrast for

theory updating (Figures 4B and S7A, Table S3; thresholded at

p< 0:001 and whole-brain cluster FWE corrected at a = 0:05)

revealed a distributed bilateral network of regions that largely

overlapped with the regions from our theory representation anal-

ysis. Most notably, in prefrontal cortex, we found bilateral clus-

ters in IFG, in addition to unilateral clusters in SFG, orbital frontal

cortex, and the supplementarymotor area.We also found a large

bilateral posterior cluster covering early and late visual regions in

occipital cortex, extending into angular gyrus and precuneus in

the dorsal stream, and extending into FFG in the ventral stream.

To ensure enough power for this analysis, the game levels in

our experiment were specifically designed to elicit learning

throughout the entire session (Figure S5B; see experimental

design). Nevertheless, the frequency of theory update events

tended to decrease over the course of the session (Figure S5A:

all games; tb = � 0:21; n = 540; z = � 7:34; p< 10� 12,

two-tailed Mann-Kendall test; p< 10� 8 for individual games,

except for Avoid George, p = 0:7). This led us to hypothesize

that the neural theory update effect might differ between earlier

levels, when there is more theory learning, and later levels,

when there is less theory learning (Figure S5). To investigate

this hypothesis, we repeated this analysis separately for each

data partition (Figures S7B–S7D). We found that the theory up-

date effect qualitatively diminished over time, with fewer and

smaller clusters surviving cluster FWE correction in later parti-

tions. However, a direct contrast between the first data partition

(Figure S7B) and the third data partition (Figure S7D) showed that

this difference is not significant (no voxels survived cluster FWE
correction), suggesting that EMPA is able to consistently capture

theory updating throughout the entire session.

To control for potential confounds, we included a number of

nuisance regressors in the GLM for events of non-interest,

including visual changes, key presses, and game events rele-

vant for theory updating (Table S2). A follow-up analysis using

anatomical ROIs from the theory updating contrast for the

entire session revealed that some nuisance regressors also

show a significant effect (Figure S6). To directly compare the

neural responses to different event types, we generated peri-

event time histograms (PETHs) from the baseline-adjusted

BOLD signal following theory updates and other control events

(Figures 4C and 4D) in bilateral anatomical ROIs with a signifi-

cant theory update effect (Figure S6). Notice that this is not a

confirmatory analysis but rather a complementary analysis

that (1) verifies whether the effect in those regions is driven

by a positive BOLD response to theory updates rather than

some combination of theory updates and nuisance regressors

and (2) verifies whether the BOLD response to theory updates

in those regions is stronger than the BOLD response to control

events. We found that, in contrast to other control events, the

increase in BOLD signal was larger and more sustained after

theory updates in IFG, all three occipital gyri, and FFG (two-

sided t tests in Figure 4C, paired t tests in Figure 4D). These

results suggest that these regions respond specifically to the-

ory updating, pointing to their potential involvement in

computing theory-prediction errors—discrepancies between

the perceived world state and the predicted world state based

on the theory—or in performing the theory update computation

in response to such errors. It is also noteworthy that these re-

gions also appear in the theory representation brain maps (Fig-

ure 3B), with IFG specifically representing the learned theory

(Figure 3C).

Separate update signals for different theory
components
The EMPA theory consists of three components: a set of ob-

ject types and their physical and/or intentional properties

(because they could be other agents), a set of relations be-

tween objects describing the outcomes of object-object

interactions, and a set of goals that the agent pursues. For

tractability, EMPA factors theory inference into separate infer-

ence processes for objects, relations, and goals.16 However,

the theory update GLM described above does not distinguish

between updates for separate theory components. Rather,

theory update events occur when either objects, relations,

or goals are updated (Figure 5A, top). When we repeated

the PETH analysis described above for individual theory

component updates, we found that some regions respond

differentially to different component updates (Figures S7E

and S7F). This led us to hypothesize that the brain might fac-

tor theory learning similarly to EMPA.

To investigate this hypothesis, we fit a GLM in which theory

updating was split into three separate regressors for object, rela-

tion, and goal updates (Figure 5A, bottom). We additionally fit

three control GLMs, each with a single component update (Fig-

ure 5A, middle). We compared GLMs using random effects

Bayesian model selection32 in the ROIs showing a significant
Neuron 111, 1331–1344, April 19, 2023 1335
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Figure 4. Theory learning signals in prefrontal cortex and ventral/dorsal streams

(A) GLManalysis pipeline. Similarly to Figure 3A, frame-by-frame state-action sequences (ða1;s1Þ;ðs2;a2Þ;ðs3;a3Þ;.) from human gameplay were replayed through

EMPA. Corresponding theory update sequences (I½q1 hq2�;I½q2 hq3�;I½q3 hq4�;.) from EMPAwere entered as regressors in a GLM. Resulting theory update beta

estimates (btheory update) for individual voxels were aggregated across participants using two-sided t tests. Resulting t-maps were thresholded at p< 0:001 and

whole-brain cluster FWE corrected at a = 0:05. See also Figure S5 and Table S2.

(B) Group-level t-maps from GLM analysis in (A). ROIs noted as OFCant, anterior orbital gyrus; SFGmedial, superior frontal gyrus, medial, and the rest as in

Figure 3B. See also Figures S6 and S7 and Table S3.

(C) Peri-event time histograms showing the average change in BOLD signal following theory updates and different control events in ROIs with significant

btheory update. Colored fringes depict error bars (SEM) across participants. Stars indicate significance for theory updates for each time point. *p< 0:05, **p< 0:01,

***p< 0:001, ****p< 0:0001, *****p< 0:00001, ******p< 10� 6 (two-sided t tests).

(D) Change in BOLD signal from (C) averaged over 20 s following corresponding event. Error bars depict SEM across participants. Significance notation as in (C)

(paired t tests).
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BOLD increase in response to all three individual component up-

dates (Figures S7E and S7F). We found that the GLM with sepa-

rate component updates best explains the BOLD signal in IFG
1336 Neuron 111, 1331–1344, April 19, 2023
and all three occipital gyri (Figure 5B; Table 1). This suggests

that, similarly to EMPA, the brain also performs a factored theory

update.



Table 1. GLM comparison results

AAL3 region

GLM PXPs

Theory updates Object updates Relation updates Goal updates Object, relation, goal updates

IFG pars triangularis <0.0001 <0.0001 <0.0001 <0.0001 0.9998

IFG pars opercularis 0.1717 0.1717 0.1586 0.1649 0.3328

Superior occipital gyrus 0.0004 <0.0001 <0.0001 <0.0001 0.99953

Inferior occipital gyrus <0.0001 <0.0001 <0.0001 <0.0001 0.99998

Middle occipital gyrus <0.0001 <0.0001 <0.0001 <0.0001 0.99996

Fusiform gyrus 0.7140 0.0097 0.0004 0.0004 0.2756

PXP, protected exceedance probability; IFG, inferior frontal gyrus.
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Theory representations activated during updating
The overlap (Figure 6A) between the brain regions representing

the theory (Figure 3) and the brain regions responding to theory

updating (Figure 4) was somewhat surprising. A priori, these re-

gions do not necessarily have to be the same: one analysis looks

for regions consistently representing the theory, without any in-
A

B

crease in activity around change points, while the other analysis

looks for regions with increased activity at theory change points,

without regard for the content of the theory itself. Indeed, we

found no significant correlation between theory embeddings

and theory updates (Figures S8A and S8B) derived from

EMPA. This led us to hypothesize that the two computations
Figure 5. Separate update signals for

different theory components

(A) Illustration of GLMs with impulse regressors for

unified theory updates (top GLM; same as in Fig-

ure 4), single component updates (middle three

GLMs), and separate updates for all three com-

ponents (bottom GLM).

(B) GLM comparison in ROIs showing a significant

increase in BOLD signal for all three theory com-

ponents (Figures S7E and S7F). ROIs noted as

in Figure 3B. Bars denote GLM BICs relative

to theory update GLM BIC. Error bars denote

SEM across participants. *p< 0:05, **p<0:01,

***p< 0:001, ****p< 0:0001 (two-sided t tests). BIC,

Bayesian information criterion. See also Figure S7.

Neuron 111, 1331–1344, April 19, 2023 1337
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Figure 6. Theory representations activated during updating

(A) Overlap between significant clusters for theory representations (Figure 3B) and theory updating (Figure 4B). ROIs noted as in Figure 3B.

(B) Peri-event time histograms showing the average change in predictivity score following theory updates and different control events in the overlapping ROIs.

Notation as in Figure 4C. Note that, in contrast to Figure 4C, the y axis is Dz, which quantifies how well an encoding model based on theory representations can

predict instantaneous patterns of brain activity after a theory update, compared with before the update. See also Figure S8.

(C) Change in predictivity score from (B) averaged over 20 s following corresponding event. Notation as in Figure 4D.
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are related in the brain. Specifically, we conjectured that theory

representations are preferentially activated during theory updat-

ing, akin to being ‘‘loaded’’ into working memory for the neces-

sary update.

To investigate this hypothesis, we plotted PETHs of the

baseline-adjusted predictivity time course from the encoding

model (Figure 3A) following theory updates and other control

events in the ROIs from the overlap. This shows, at each time

point after the event, how well the pattern of BOLD activity

can be predicted based on the inferred theory, compared

with immediately before the event. We found a significant sus-

tained increase in predictivity after theory updates in IFG (trian-

gular and opercular parts), all three occipital gyri (inferior, mid-

dle, superior), and FFG (Figure 6B; two-sided t tests).

Furthermore, the magnitude of this increase was significantly

greater for theory updates compared with other events (Fig-

ure 6C; paired t tests), suggesting that theory representations

are activated in these regions specifically during theory updat-

ing. Additionally, among a set of a priori ROIs thought to be

involved in the relational and semantic representations,33–35

we found a significant effect in parahippocampal cortex

(Figures S8C and S8D).
1338 Neuron 111, 1331–1344, April 19, 2023
To investigate whether this effect varies between individual

theory components, we repeated this analysis for separate

component updates using the corresponding encoding models

fit for objects, relations, or goals only. We found that most re-

gions did not show a significant difference (Figures S8E and

S8F), with the exception of FFG in which object representations

were activated after object updates more strongly compared

with relation and goal representations during their respective up-

dates (p< 0:001, Bonferroni corrected), suggesting a specific

role for FFG in object updating.

Effective connectivity during theory updating is
consistent with predictive coding
Having identified brain regions involved in theory representation

(Figure 3), theory updating (Figures 4 and 5), and the dynamic

interplay between these processes (Figure 6), we finally sought

to characterize the pattern of information flow between these re-

gions. Using a beta series GLM,36 we extracted estimates of

instantaneous neural activity during theory update events from

ROIs that showed a significant effect in the previous analyses.

We additionally extracted estimates from visual and motor

ROIs in order to include potential inputs and outputs to and
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Figure 7. Effective connectivity during the-

ory updating is consistent with predictive

coding

(A) Best-fitting effective connectivity pattern based

on neural responses to theory update events esti-

mated using beta series GLM. ROIs noted as in

Figure 3B.

(B) Same results using neural responses 2 s after

theory update events.
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from theory-coding and theory-updating regions. We entered

the resulting estimates into the independent multiple-sample

greedy equivalence search (IMaGES) algorithm36,37 from the

TETRAD software package for causal modeling,38 which

greedily searches the space of effective connectivity patterns

for the one that best fits the data. Our hypothesis was that, during

theory updating, information would flow in a bottom-up fashion,

from early visual regions through theory-updating regions in oc-

cipital and temporal cortex to theory-coding regions in prefrontal

cortex, where the updated theory is putatively stored.

To the contrary, we found the opposite pattern, with informa-

tion flowing in a top-down fashion from prefrontal theory-coding

regions to theory-updating regions in occipital and temporal cor-

tex to early visual regions (Figure 7A). When we repeated the

same analysis, except using neural activity 2 s after theory up-

dates, we found a bottom-up pattern consistent with our prior

expectations (Figure 7B). These findings are consistent with a

predictive coding interpretation: information about the brain’s in-

ternal model of the world (in our case, the theory) is flowing top-

down from higher areas in prefrontal cortex, shaping sensory

predictions in lower visual areas; when an inconsistency be-

tween predictions and observations is detected, this results in

a theory prediction error that triggers a theory update, reversing

the flow of information so that the new sensory data can be used

to update the theory in the higher regions.

DISCUSSION

A longstanding question in neuroscience is how the brain repre-

sents the structure of the environment in order to support effi-

cient learning and flexible generalization. One possible answer

from cognitive science is that the brain learns a rich, abstract,

causal model grounded in core cognitive concepts such as ob-
N

jects, relations, and goals, which is used

to simulate the outcomes of different

courses of action during planning.15–17,39

We found support for this kind of theory-

based RL using fMRI data from human

participants learning to play different

Atari-style games. The theory inferred by

a theory-based RL agent can explain vari-

ance in IFG and other prefrontal regions

better than control models, suggesting

that those regions encode theory-like rep-

resentations above and beyond visual

and model-free RL features. In an over-

lapping network of regions, including
IFG, occipital gyri, and FFG, we found theory learning signals

that could not be explained by visual events, motor actions, or

theory-related nuisance variables, suggesting those regions

play a role in theory inference. In a subset of those regions, we

found evidence for separate learning signals for objects, rela-

tions, and goals, suggesting that the brain factors theory infer-

ence similarly to our theory-based RL agent. We additionally

found that the striking overlap between theory-coding and the-

ory-learning regions is not coincidental, with theory representa-

tions being activated following theory updates. Finally, we found

that the effective connectivity pattern during theory updates is

consistent with predictive coding,18,19 with feedback connec-

tions conveying theory predictions and feedforward connections

conveying theory prediction errors.

The idea that animals learn rich, structured representations of

their environments dates back to Tolman’s work on latent

learning.40,41 Tolman observed that rats were able to quickly

find newly placed rewards in a maze after repeated unrewarded

exposures to the maze, leading him to hypothesize that this flex-

ible generalization is supported by ‘‘cognitive maps42–44’’—inter-

nal models of the world which allow animals to mentally search

through space and find efficient paths to goals. Neural evidence

for cognitive maps was famously identified in the hippocam-

pus,45 where place cells appear to encode an animal’s location

in space. Subsequent studies found evidence that cognitive

maps can represent nonspatial domains46,47 and also appear

in other parts of the brain,48–50 such as ventral prefrontal

cortex, which includes IFG, a region our study implicates in the-

ory coding. Our study found some evidence of theory represen-

tations in parahippocampal cortex but not in the hippocampus.

This is likely due to the fact that the theory on its own does not

constitute a map per se, but rather a set of abstract relational

rules that, when grounded in a particular world state (such as a
euron 111, 1331–1344, April 19, 2023 1339
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video game frame), can be used to predict future world states.

We conjecture that the hippocampus and medial entorhinal cor-

tex might be involved in such grounded representations, encod-

ing a theory-based transition structure between concrete world

states that directly supports planning, rather than the abstract

theory itself.

Our findings resonate with recent studies that have used

computational modeling to identify a more specific role for pre-

frontal cortex in representing and/or updating an internal causal

model of the world.51 In an fMRI study comparing model-based

and model-free RL prediction errors, Gl€ascher et al.10 reported

state prediction error signals—discrepancies between the

observed state and the state predicted by the brain’s internal

model, akin to theory prediction errors in our study—in similar

prefrontal regions, particularly in bilateral IFG. Another fMRI

study by Lee et al.52 reported evidence of rapid, one-shot

learning of causal associations encoded in ventrolateral prefron-

tal cortex, including the IFG. An fMRI study of causal structure

learning from our lab31 found causal structure learning signals

in a distributed bilateral network of regions, including IFG,

MFG, and SFG, regions in occipital cortex, and regions in the

ventral stream such as FFG. In that study, we also reported evi-

dence of beliefs about causal structure being activated in

response to feedback in a frontoparietal network of regions,

including IFG. Another study from our lab53 also reported evi-

dence of beliefs about causal structure being activated in IFG

during belief updating.

A separate line of work has implicated similar prefrontal re-

gions in relational reasoning.54,55 Knowlton et al.56 unified

some of these findings using a role-based relational reasoning

model (LISA), according to which prefrontal cortex encodes ab-

stract relational rules as distributed role-filler bindings at

increasing levels of abstraction, from objects to relations to

propositions, somewhat reminiscent of our HRR theory code.

In LISA, rules are rapidly updated via spike-timing dependent

plasticity in the anterior prefrontal cortex and are activated in

working memory by long-distance connections from semantic

units in posterior cortex. This bears a striking resemblance to

our proposal and suggests that theory-based RL could serve

as a unifying lens for results from the neuroscience literature

on model-based RL, causal inference, and relational reasoning.

According to this view, these findings could be interpreted as

signatures of the same theory inference machinery applied to

different, narrower domains, with IFG serving as the key locus

of theory computation/storage in the prefrontal cortex and pos-

terior regions computing theory prediction errors for theory

learning.

Video games have long served as microcosms in which to

compare human and machine intelligence in naturalistic, com-

plex environments.2,14 Most closely related to our work is a

recent study by Cross et al.9 in which fMRI data from human par-

ticipants playing Atari games was analyzed using a deep RL

network (DQN), a powerful model-free RL algorithm. The authors

found evidence of DQN representations across a distributed

network of regions, most notably in the dorsal visual stream

and posterior parietal cortex. Despite similar methodology, there

are crucial differences between our studies. Themost critical dif-

ference is that we are interested in howpeople learn to play these
1340 Neuron 111, 1331–1344, April 19, 2023
games—an aspect of human behavior that is particularly well-

captured by theory-based RL compared with model-free deep

RL—whereas Cross et al.9 are interested in the sensorimotor

transformations that support gameplay after learning has pla-

teaued. This in turn dictates important design decisions that

differ between the two studies. Most importantly, we focus on

games in which—according to our prior work—people’s

behavior seems to be model-based and, in particular, seems

to follow the predictions of theory-based RL, whereas Cross

et al.9 focus on games in which people’s behavior follows the

predictions of the model-free DQN. As a result, our study in-

cludes more games which are played over shorter timescales

and have less visually distinct features, more complex rules,

and levels designed to maximize learning. This could explain

the relatively poor performance of our model-free RL control in

matching human performance and brain activity.

However, our results are not mutually exclusive with those of

Cross et al.9 Multiple studies have shown that brains employ a

mix of model-free and model-based RL strategies.10–13 Indeed,

the results fromCross et al.9 point to the dorsal stream, posterior

parietal cortex, and motor areas as being the loci of model-free

sensorimotor transformations, whereas they report little evi-

dence for model-free representations in prefrontal regions and,

in particular, they do not report any results in IFG. In contrast,

our results point to prefrontal cortex—and IFG in particular—as

the locus of theory encoding, and to occipital and ventral stream

regions as the loci of theory learning; at the same time, we find

little evidence for theory-based representations in the dorsal

stream, posterior parietal cortex, or motor cortex. Thus, the re-

sults from the two studies can be seen as complementary, point-

ing to hybrid architecture that includes both theory-based and

model-free components. Although EMPA in its current form is

purely model-based, it can straightforwardly be extended to

include learned policy and/or value components to help guide

the search toward promising action plans. In the field of artificial

intelligence, such hybrid approaches have recently achieved

remarkable success in learning to play board games3,4 and video

games,5 suggesting that this could be a fruitful avenue for future

neuroscience research.

Although our results and the results of Tsividis et al.16 cannot

be accounted for purely by relatively straightforward deep RL

approaches like DDQN, they certainly do not rule out more so-

phisticated deep RL architectures. For example, deep model-

based RL architectures equipped with planning and model

learning modules have shown much faster learning and superior

performance on Atari games.5,57 Similar to EMPA, such ap-

proaches can learn a model of the environment from scratch

and use it to plan efficiently. Alternatively, deep meta-RL ap-

proaches use a model-free RL algorithm to learn a model-based

RL algorithm.58,59 Such models could in principle learn theory-

like representations or even an EMPA-like theory-based RL algo-

rithm from scratch. However, even if such models were able to

capture human behavior and brain activity, their opacity would

still leave open the question of what humans are actually

learning. In contrast, EMPA and theory-based RLmore generally

characterize the structure and content of inductive biases and al-

gorithms from the beginning to the end of gameplay, which was

the original goal of our work and which other models have not
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been able to explain. Beyond that, theory-based RL could be

seen as the outcome of another learning process—perhaps

spread across both evolution and development—which could

in principle be modeled by deep RL.58,59 We leave this as the

subject of future work.

Our model relies on the same theory inference machinery for

all games. This is somewhat at odds with the finding that games

which require less planning show weaker theory representations

(Figures S4E–S4G). Indeed, there is no way for EMPA to ‘‘know’’

that a game requires less planning until it has already inferred a

theory for it and played it for a while. One possible explanation

is that the reactive nature of these games prompts an alternative

mechanism for generating actions that relies less on the theory.

Model-free RL offers one such mechanism,9 which once again

points to the possibility of a hybrid theory-based/model-free ar-

chitecture, highlighted above, and could be investigated in

future work.

Relatedly, our model predicts that theory representations

should be persistently active as they continuously inform plan-

ning during gameplay. The finding that theory representations

are activated preferentially during theory updates is somewhat

at odds with this prediction (Figure 6). One possible explanation

is that the increased BOLD activity during theory updates results

in an increased signal-to-noise ratio, allowing the encoding

model to achieve better predictivity. If that could fully account

for the effect, we would expect to see transient changes in pre-

dictivity for other events that elicit an increased (albeit to a lesser

extent) BOLD response in those regions (Figure 4C), something

we did not observe (Figure 6B). An alternative explanation is

that the theory is not stored as a persistent pattern of neural ac-

tivity but is rather stored ‘‘silently,’’60 perhaps in the pattern of

synaptic weights, and is only activated when updated by the the-

ory inference circuitry.

Our effective connectivity analysis suggests that top-down in-

formation about the theory from prefrontal regions flows to oc-

cipital and ventral stream regions for predicting sensory inputs

and that when a discrepancy occurs—a kind of theory prediction

error—information flows the other way for updating the theory in

prefrontal regions based on sensory input from occipital and

ventral stream regions. This is broadly consistent with hierarchi-

cal predictive coding18,19: the idea that top-down (feedback)

connections convey model predictions originating in higher

cortical areas that shape neural activity in lower cortical areas,

which in turn compute prediction errors that are conveyed to

higher areas via bottom-up feedforward connections for model

updating. Despite this affinity, there are important differences

between our proposal and traditional predictive coding ac-

counts. First, the predictive coding interpretation only pertains

to information flow between regions representing the learned

theory and regions computing theory prediction errors. Impor-

tantly, it does not account for the processes of learning, plan-

ning, and exploration, which are core aspects of theory-based

RL. Second, predictive coding models are usually employed in

narrow domains, often focusing on simple problems of low-level

perception18 or simple RL problems.61 In contrast, EMPA and

theory-based RL more broadly focus on solving richer and

more structured problems. Our approach considers perception

and inference in the context of a complete modeling, planning,
and exploring agent; the models and plans generated by

EMPA—and those generated by the brain—have more structure

to them than those generated by standard predictive coding ap-

proaches. Finally, theory-based RL and predictive coding are

frameworks at fundamentally different levels of description62:

theory-based RL is a computational-level proposal of explora-

tion, modeling, and planning based on Bayesian inference over

intuitive theories (with EMPA being a particular algorithmic

instantiation of it), whereas predictive coding is an implementa-

tion-level proposal of neural coding and dynamics of modeling

and perception.63 Viewed in this light, our results suggest that

the general predictive coding framework could be a promising

starting point for studying theory predictions, theory prediction

errors, and theory updating at the neural level. Future work could

formally relate EMPA to particular predictive coding formula-

tions, which could provide a richer theoretical framework for un-

derstanding the interplay between top-down and bottom-up

inferential processes in the brain, as well as the interplay be-

tween model learning, exploration, and planning, relative to cur-

rent predictive coding models.

One puzzling aspect of our results is the prevalence of visual

regions, which raises the possible concern that our analysis

was not selective enough to exclude visual confounds. This

concern is partly addressed by our control analyses. In our en-

coding model analysis (Figure 3), we found that EMPA consis-

tently outperformed all of our control models in prefrontal re-

gions, but not in other cortical areas; indeed, in most other

regions, EMPA was no better than PCA, suggesting that the the-

ory effects in those areas could be partly explained by visual fea-

tures. The theory update GLM (Figure 4) included visual nuisance

regressors that showed a stronger effect in some regions, partic-

ularly in early visual areas, suggesting that those regions play a

role in visual processing that is not specific to theory updating.

Accordingly, we excluded early visual areas from reporting and

follow-up analyses. Theory learning effects in higher visual areas

could be partly explained by our effective connectivity results:

according to the predictive coding interpretation, it is precisely

visual regions that ought to compute theory prediction errors—

discrepancies between theory-based predictions and sensory

observations—which in turn serve as the basis for updating the

theory in prefrontal regions. It is also worth noting that previous

work on causal structure learning31 has also reported evidence

for model updating in visual areas. Additionally, to some extent

our experimental design already controls for visual confounds

by having participants play the same level on repeat for 1minute.

If they do end up playing the same level for multiple episodes,

most learning occurs during the first episode(s), with the other

episodes serving as implicit controls with nearly identical visual

inputs but little-to-no theory learning. This idea could be taken

further by having participants watch a replay of their own game-

play immediately after the game or in a subsequent scan ses-

sion. We leave this kind of control study as future work.

In summary, our results are consistent with a neural architec-

ture of theory-based RL in which theory representations in IFG

and other prefrontal regions are activated and updated in

response to theory prediction errors computed in occipital and

ventral stream regions, such as FFG, in a way consistent with hi-

erarchical predictive coding. Additionally, we hope that our work
Neuron 111, 1331–1344, April 19, 2023 1341
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highlights the benefits of combining sophisticated, interpretable,

end-to-end cognitive models such as EMPA with naturalistic

experimental environments such as video games. By comparing

the internal representations of such models with brain activity,

researchers can begin to uncover how the brain learns and rep-

resents an internal model of the environment that supports adap-

tive behavior in complex, naturalistic tasks.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirty-two healthy participants were recruited from the Cambridge, MA community: 15 female, 17 male, 19-36 years of age, mean

age 24±4 years, all right-handed and with normal or corrected-to-normal vision. The study was approved by the Harvard University

Institutional Review Board and all participants gave informed consent. All participants were paid for their participation.

METHOD DETAILS

Experimental Design
Each participant played 6 different Atari-style games adapted from Tsividis et al.16 over the course of 6 scanner runs in a single ses-

sion (Figure 2B). Six games were played across 6 scanner runs. Each run consisted of 3 blocks. Each block consisted of 3 levels of a

given game. Each level was played on repeat for 1 minute total: if the episode ended before 1 minute had elapsed, a new episode

began on the same level. Nine levels were played in total for each game. Scanner runs were grouped in 3 data partitions for cross-

validation. Game order was pseudo-randomized such that each data partition contained one block of each game, ensuring that

games and levels were balanced across partitions.

For each participant, games were randomly assigned names that were unrelated to the game rules (Archeplan, Deception Eagle,

Dreams of Origins, Giants of Solitude, Questtide, Fuseville, Prime Origin). At the beginning of each block, the game name was shown

for 2 s (Figure 2A). During an episode, the game name and the current score were displayed at the top of the screen. At the end of an
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episode, the outcome (‘‘You WON!’’ or ‘‘You LOST!’’) was shown at the bottom of the screen and the final frame was frozen for 2 s.

Timing was adjusted such that each level was played for one minute total. After one minute, the current episode was interrupted with

a ‘‘End of level’’ outcome (to distinguish it from a win or loss) shown for 2 s, unless the participant was already on a win/loss screen.

There was a 10-s fixation cross at the beginning and end of each run to account for scanner stabilization and the hemodynamic lag,

respectively. Each run was 566 s in total.

Following Tsividis et al.,16 in order to avoid biasing learning with semantic priors based on object appearance, all games were

played in ‘‘color-only’’ mode: all objects were visualized as colored squares with symbols on them. Objects of the same kind had

the same color and symbol, while objects of different kinds had different colors and symbols. Color and symbol assignments

were randomized across games and participants. The game descriptions were inspired by and/or drawn from the General Video

Game AI (GVGAI) competition65 and expressed in the Video Game Description Language66 (VGDL). Participants 1 through 11 played

Chase, Helper, Bait, Zelda, Lemmings, Plaque Attack. Participants 12 through 32 played the same games, except for Plaque Attack

which was replaced by Avoid George. These games are a subset of the games used by Tsividis et al.16 and, in choosing them, we

aimed to cover a large and heterogeneous space in order to demonstrate the flexibility of human gameplay behavior and the versa-

tility of our model. All games were fully observable, i.e. no memory of past states is required to win. Each game had 5 actions: move

left, move up, move down, move right, action key. The levels were designed to ensure continuous learning about the game rules.

Specifically, different levels involved different object layouts and later levels occasionally introduced opportunities to learn about

game rules that were not available in earlier levels. Game descriptions, winning strategies, and example screenshots are shown in

Table S4. Level descriptions are available at https://github.com/tomov/RC_RL/tree/fmri/fmri_all_games.

Participants were told that they would be playing a sequence of Atari-style gameswith different rules and that theywill have to learn

the rules of each game from experience. The game and level order and timing was explained to them (Figure 2B), as well as that they

would be playing all games in color-onlymode andwhat that is. Specifically, theywere told that the colors, symbols, and game names

convey no information about the game rules, except that objects of the same kind look the same in a given game. They were also told

that colors and symbols in one game convey no information about objects in another game. All participants were paid a base of $80

for their participation. Additionally, to incentivize learning, we paid participants a bonus based on performance. Specifically, for each

participant, we randomly chose a level and paid them the maximum score they achieved (in dollars) at the end of any episode on that

level, counting only episodes which they won. If they never won that level, the bonus was $0. This bonus scheme was explained to

them in detail. They were also told that it is meant to encourage efficient learning and gameplay: they should aim to maximize the

score and win each level within 1 minute.

In the scanner, participants played using a 5-finger button box, with each button corresponding to a game action (index finger =

move left, middle finger =move up, ring finger =move down, pinky finger =move right, thumb = action key). Before entering the scan-

ner, participants practiced by playing 3 levels (1 block) of a different game (Sokoban) on the laptop using a similar key setup. This

game was not played in the scanner. Overall, the entire scan session took 2.5 hrs per participant, 1.5 hrs of which was spent in

the scanner, 1 hr of which was spent on BOLD acquisition and gameplay.

fMRI Data Acquisition
We followed a similar protocol to our previous work.67 All participants were scanned using a 3T Siemens Magnetom Prisma MRI

scanner with the vendor 32-channel head coil (Siemens Healthcare, Erlangen, Germany) at the Harvard University Center for Brain

Science Neuroimaging. A T1-weighted high-resolution multi-echo magnetization-prepared rapid-acquisition gradient echo

(ME-MPRAGE) anatomical scan68 of the whole brain was acquired for each participant prior to any functional scanning: 176 sagittal

slices, voxel size = 1:031:031:0 mm, TR = 2530 ms, TE = 1.69–7.27 ms, TI = 1100 ms, flip angle = 7+, FOV = 256 mm. Functional

images were acquired using a T2*-weighted echo-planar imaging (EPI) pulse sequence that employed multiband RF pulses and

Simultaneous Multi-Slice (SMS) acquisition.69–71 We collected 6 functional runs for each participant, each with 283 timepoints (Fig-

ure 2B). Scan parameters: 87 interleaved axial-oblique slices per whole-brain volume, voxel size = 1:731:731:7 mm, TR = 2000 ms,

TE = 30ms, flip angle = 80+, in-plane acceleration (GRAPPA) factor = 2,multi-band acceleration factor = 3, FOV = 211mm. Functional

slices were oriented to a 25+ tilt towards coronal from AC-PC alignment. The SMS-EPI acquisitions used the CMRR-MB pulse

sequence from the University of Minnesota.

All 32 participants were included in the analysis. Scanner runs with excessive motion (> 3 mm translation or > 3+ rotation) were

excluded from the analysis.

fMRI Preprocessing
Following our previous work,67 we preprocessed functional images using the SPM12MATLAB toolbox (Wellcome Department of Im-

aging Neuroscience, London, UK). Each functional scan was realigned to correct for small movements between scans, producing an

aligned set of images and a mean image for each participant. The high-resolution T1-weighted ME-MPRAGE images were then co-

registered to the mean realigned images and the gray matter was segmented out and normalized to the gray matter of a standard

Montreal Neurological Institute (MNI) reference brain. The functional images were then normalized to the MNI template (resampled

voxel size 2mm isotropic), spatially smoothed with a 8-mm full-width at half-maximum (FWHM)Gaussian kernel, high-pass filtered at

1/ 128 Hz, and corrected for temporal autocorrelations using a first-order autoregressive model.
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EMPA
A detailed technical description of EMPA can be found in Tsividis et al.,16 whichwe summarize here. EMPA learns amodel (or theory),

q, of each game expressed in VGDL.66 VGDL breaks down the game rules into three different components corresponding to core

aspects of human intuitive theories39,72: objects (sprites), relations (interactions) between objects, and goals.

A VGDL game description consists of a SpriteSet, qS, which specifies the type, appearance, and dynamic properties each object

(e.g., ‘‘red objects chase the avatar at a speed of 3 squares per second’’); an InteractionSet, qI, which specifies what happens when

two objects interact (e.g., ‘‘when a red object collides with the avatar, the avatar dies’’); and a TerminationSet, qT , which specifies the

win/loss conditions of the game (e.g., ‘‘when the avatar dies, the game is lost with a score of 0’’). A VGDL description thus procedur-

ally defines a Markov Decision Process: the state at every timestep is described by the object instances and locations, the avatar’s

internal state, and any events due to collisions between pairs of objects; the transition function is defined by the SpriteSet, the

InteractionSet, and the TerminationSet; and the reward function is defined by the InteractionSet and the TerminationSet.

EMPA learns the rules of each game by inferring a probability distribution over the space of possible VGDL theories,Q, from expe-

rience using Bayesian inference:

pðqjs1:T ; a1:T � 1Þfpðs1:T jq; a1:T � 1ÞpðqÞ; (Equation 1)

where q = ðqS; qI; qTÞ is the inferred theory describing the game rules, T is the current timestep, s1:T is the history of observed states,

a1:T � 1 is the history of avatar actions, and pðqÞ is a minimum description length prior favoring simpler theories.

To choose actions, EMPA uses the maximum a posteriori theory, q�, together with a simulation-based planner that searches for

action sequences that lead to rewarding outcomes under q�. Specifically, EMPA pursues exploitative goals that lead to winning (ac-

cording to q�T ), as well as exploratory goals that reduce the uncertainty in q (e.g., inducing an unobserved collision). Pursuit of these

sparse goals is aided by subgoals, which represent partial progress towards goals (e.g., ‘‘3 blue objects remaining’’), and goal gra-

dients, which represent preferences for states that are spatially closer to achieving a subgoal (e.g., ‘‘the closest blue object is 3

squares away’’). Planning is further aided by state pruning and re-planning based on prediction errors, as described in Tsividis et al.16

In our study, we used the same EMPA parameters and settings as those in Tsividis et al.16 The code for EMPA will be available at

https://github.com/tsividis/vgdl upon publication.

To investigate the contribution of different EMPA components to behavior, we additionally performed three ablations from Tsividis

et al.16 (Figure S1A):

d no intrinsic rewards – no subgoals or goal gradients, leaving the planner to rely only on the sparse environmental rewards,

d no iterative width – the planner cannot rely on the iterative width heuristic, which prunes states that are similar to already visited

states and greatly ameliorates the combinatorial explosion associated with longer plans,

d e-greedy – theory-driven exploration favoring novel interactions is replaced with ε-greedy exploration (e = 0:1).
DDQN
Following Tsividis et al.,16 as a control model we trained a deep reinforcement learning network (DDQN) based on the public repos-

itory https://github.com/dxyang/DQN_pytorch with parameter settings a = 0:00025;g = 0:999;t = 100, experience-replay max =

50;000, batch size = 32, and image input recrop size = 643 643 3. The exploration parameter, e, was annealed linearly from 1 to 0.1

using a decay rate of 200 steps. Following,2 the DDQN had 3 convolutional layers (conv1: 32 filters with size = 838 and stride = 4;

conv2: 64 filters with size = 434 and stride = 2; conv3: 64 filters with size = 333 and stride = 1), followed by a fully connected layer

(linear1: 512 units), followed by the output layer (linear2: 5 units). Each convolutional layer was followed by batch normalization and

linear rectification (ReLU). ReLU units also followed the fully connected layer. The input was a 6436433 scaled game frame with 3

color channels (RGB). To ensure a fair comparison with EMPA, we pretrained a separate DDQN for each game using a VGDL envi-

ronment for 100 epochs of 250; 000 steps. Levels were alternated across epochs to ensure exposure to all levels. Specifically, in each

epoch, the DDQN was trained on a given level for one or more episodes, restarting the level if it was won or lost. During epoch 1, we

trained on level 1, during epoch 2, we trained on level 2, and so on, starting over from level 1 after level 9.We used the same pretrained

DDQNs for both the behavioral and the neural analyses.

The code for the DDQN is available at https://github.com/tomov/RC_RL.

Generative play
To compare human performance with EMPA and DDQN performance, we valuated the models on the same games and levels as the

human participants. We simulated each participant with EMPA by having a separate EMPA instance play all levels of each game gen-

eratively, in order. As with human participants, each level was played for 1200 frames (60 sec at 20 Hz), restarting the level if won or

lost before that. Similarly to humans, performance was evaluated based on the expected bonus payout, namely the maximum per-

level winning score, averaged across all levels and games.We simulated 32 participants independently, each simulation correspond-

ing to a single human participant. We similarly simulated 32 participants with the pretrained DDQNs. Note that, unlike the DDQNs,

EMPA does not require pretraining.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Human and model behavior
We compared human andmodel generative performance using two-sidedWilcoxon rank sum tests based on actual (for participants)

and simulated (for models) expected bonus payouts (Figure 2C). To compare human and model learning, we fitted a second-degree

polynomial (no intercept) to the average learning curve (Figure S1A) and compared the resulting linear coefficients for humans and

models using two-sample t-tests.

Encoding model analysis
To compare EMPA theories to brain activations, we used an encoding model9,73,74 that maps EMPA theory embeddings to BOLD

signal (Figure 3A). For each participant, we first replayed the sequence of states, actions, and rewards from their gameplay in the

scanner through EMPA, using a separate EMPA instance for each game. This produced an EMPA theory for each frame, correspond-

ing to the theory that EMPA would have inferred at that timepoint if it had observed the same sequence of events as the participant

(Figure S1D).We embedded each theory in a vector space using holographic reduced representations (HRRs; see below), resulting in

a sequence of HRR embeddings. To account for the stochasticity inherent in HRRs, we independently generated 100 such se-

quences, each with a different random HRR initialization. Each sequence was convolved with the canonical hemodynamic response

function from SPM and subsampled at the scanner frequency (TR = 2 s, or 0.5 Hz).

For each voxel, we predicted the BOLD signal with Gaussian process (GP) regression (see below) using cross-validation across the 3

data partitions (Figure 2B).Wequantified accuracy by correlating the predictedwith the actual BOLDsignal for each partition, averaging

the resulting Pearson correlation coefficients across partitions, and Fisher z-transforming the result to obtain a single predictivity score z

for that voxel. To aggregate acrossparticipants,weperformed a two-sided t-test against 0 acrossparticipants for each voxel, producing

agroup-level statisticalmap (t-map). Followingour previouswork,67we thresholdedsingle voxelsatp< 0:001 andapplied cluster family-

wise error (FWE) correction at significance level a = 0:05.We visualized the corrected t-maps using the bspmview toolbox inMATLAB.

Anatomical regions of interest (ROIs) were extracted by cross-referencing the peak voxels in each cluster (up to 3 peaks peaks per

cluster, minimum 20 voxels apart) with the automated anatomical labeling atlas29 (AAL3 atlas). Confirmatory ROI analyses were per-

formed using bilateral anatomical ROIs from all models (see Control models below). In a given ROI, for each participant we computed

the fraction of significant voxels as the number of voxels with a significant Pearson correlation at the a = 0:05 significance level,

divided by the total number of voxels in the ROI. We compared models in each ROI using Wilcoxon signed rank tests across partic-

ipants. To aggregate ROIs into ROI groups (Figures S4C and S4D), we simply merged ROIs from a given cortical region into a single

‘‘macro-ROI’’ and performed the same analysis.

We similarly applied GP regression with our control models.

For the within-games model comparison (Figures S4D–S4G), we repeated this analysis separately for each game, only using the

BOLD signal from TRs corresponding to that game. To aggregate across games, we averaged the fraction of significant voxels across

games for each participant.

To look for differences between games (Figures S4E–S4G), we designated games that involve reasoning sequentially over multiple

kinds of interactions (e.g., picking up a key to unlock a door to reach a goal, as in Bait; pushing an object into another object to destroy

it, as in Helper; destroying objects so that other agents can reach a goal, as in Lemmings) as requiring more planning, and the rest as

requiring less planning.

Gaussian Process regression
For the encoding model we used Gaussian process (GP) regression,21 a nonparametric method for predicting values of unseen data

points based on similarity with observed data points. Ridge regression – amore commonly used encodingmodel9,75 – can be derived

as a special case of GP regression. However, unlike ridge regression, GP regression avoids the need to fit weights to individual HRR

components (which by design are random) and allows for straightforwardly accounting for the randomness of HRRs.

To justify the use of GP regression, first consider the standard general linear model (GLM) formulation:

y = fðqÞ+ e; (Equation 2)
fðqÞ = 4ðqÞuw = xuw; (Equation 3)

where y is the neural signal at a given time point, q is the EMPA theory, 4ðqÞ = x is the HRR embedding of q,w are the component

weights (often referred to as beta coefficients), and e is Gaussian noisewith zeromean and variance s2n. SuchGLMs are routinely used

to fit brain data and the resulting weights w – often fit using maximum likelihood estimation – are used to interpret whether a given

feature is represented in brain activity.
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High-dimensional feature spaces pose a challenge to this approach, as the weights might be underconstrained. One way around

this is to impose a prior distribution on the weights:

w � Nð0;SwÞ; (Equation 5)

where Sw is the prior weight covariance matrix. The maximum a posteriori solution to this Bayesian linear regression problem is

equivalent to ridge regression, where a regularization term that constrains the weights arises naturally from the weight prior.

The challenge with applying ridge regression is that HRR embeddings are random, which 1) renders the weights meaningless, and 2)

necessitates averaging over that randomness. These issues can both be addressed byGP regression. First, the predicted neural signalby� for a theory q� can be directly computed in closed form from the training data q;y,21 bypassing the need to compute the weights:

by�jq�;q; y =
1

s2
n

xu
� A

� 1Xy; (Equation 6)
A = s� 2XXu +S� 1
w ; (Equation 7)

where q = ½q1; q2; q3;.�u and y = ½y1; y2; y3;.�u are the training theory and neural activation sequences, respectively, q� and y�
are the held-out theory and neural activation, respectively, x� = 4ðq�Þ is the HRR embedding of the held-out theory, and

rX = ½x1; x2; x3;.� = ½4ðq1Þ;4ðq2Þ;4ðq3Þ;. � is the training data design matrix (Figure S2A). Note that we are only using the posterior

means and omitting the variances for ease of exposition.

This can be further rearranged by applying the ‘‘kernel trick21’’, resulting in GP regression:

by�jq�;q; y = ku
�
�
K + s2

nI
�� 1

y; (Equation 8)
k� = Xu
Swx�; (Equation 9)
K = Xu
SwX: (Equation 10)

Here, the covariancematrix (or kernel)K quantifies the similarity between every pair of theories in the training data (Figure S2B), and

the covariance vector k� quantifies the similarity between every training theory and the held-out theory. In our case, they were

computed based on the HRR design matrix X, but in principle we could use a similarity metric that does not rely on explicitly

computed features. We used Sw = I, so our similarity metric for each pair of theories was effectively the dot product of their

HRR embeddings. Intuitively, Equation 8 says that the predicted held-out neural activation is the average of the training neural ac-

tivations, weighted by the similarity between the corresponding training theories and the held-out theory.

Finally, we can account for the randomness of HRRs by marginalizing over different HRR embedding functions 4 resulting from

different HRR initializations:

by�jq�;q; y =

Z
4

ku
�
�
K + s2

nI
�� 1

ypð4Þd4: (Equation 11)

From the central limit theorem and the stochasticity of HRRs, the resulting distributions of K and k� are approximately Gaussian, so

we chose to simplify further by approximating them using Dirac delta functions around their means, K = E4ðKÞ and k� = E4ðk�Þ,
yielding the final GP formulation that we used:

by�jq�;q; yzk
u

�
�
K + s2

nI
�� 1

y: (Equation 12)

We used a sampling approximation for K and k� by averaging over the kernels for 100 different HRR initializations. In practice, dur-

ing cross-validation, we had a set of held-out data points q�; y� (rather than a single data point) with a corresponding covariance ma-

trix K� between the training and held-out data points. So for each HRR initialization we computed a single kernel for all three data

partitions, averaged the kernels across different HRR initializations, and then selected submatrices of the average kernel to get K

and K� accordingly for each cross-validation fold.

Our initial results indicated that our analysis is confounded by game identity: it produces nearly identical results to those of a simple

model were the feature vector x is a 6-dimensional one-hot vector representing the game currently being played (Figure S3). To

address this, we regressed out game identity from the BOLD signal and the model:

y
0
= Ry; (Equation 13)
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K0 = RKRu; (Equation 14)

whereR = I � XgX
y
g is the residual formingmatrix for the game identity encodingmodel defined by the designmatrix Xg (y denotes

the Moore-Penrose pseudoinverse). This is equivalent to using the residuals from a game identity GLM fit to the BOLD signal.

Holographic reduced representations
We embedded EMPA theories in a vector space using holographic reduced representations22 (HRRs), a kind of vector symbolic

architecture76 that can represent compositional structure in distributed form. HRRs were originally proposed as a model of associa-

tive memory and have since been used for modeling structured memories of past events.77 HRRs use circular convolution (⍟) to

associate pairs of items, represented by vectors, and addition to create bags of associations. The resulting vectors can be further

associated or grouped together to represent higher-order compositions. Individual items could be extracted from the resulting vector

using circular correlation, although we do not take advantage of this in our work.

An EMPA theory consists of three components – objects (SpriteSet), relations (InteractionSet), and goals (TerminationSet) – that we

embed separately and then combine into a single vector (Figure S1B).

The SpriteSet is a set of object (sprite) classes, each consisting of a set of properties with given values (e.g., type=Missile,

color=blue, speed=slow). The base vectors corresponding to properties (e.g., type) and their values (e.g., Missile) are drawn from

isotropic D-dimensional Gaussian distributions N �
0; s2hI

�
, where sh = 1=

ffiffiffiffi
D

p
, bound together using circular convolution, and added

toproduce the vector for thecorrespondingspriteclass (e.g., c3= type⍟Missile +color⍟blue+speed⍟ slow). The vectors for different

sprite classes are scaled to unit length and added together to produce the SpriteSet vector, which is also normalized to unit length.

The InteractionSet is a set of relations (interactions) between pairs of sprite classes, each describing the outcome of an interaction.

Each interaction has three key properties: an agent sprite class, a patient sprite class, and an interaction type describing the outcome

of the interaction (e.g., killObject). In addition, theremay be other optional properties (e.g., scoreIncrement). Aswith the SpriteSet, the

base vectors for properties and their values are drawn from D-dimensional isotropic Gaussian distributions, with the exception of

values for agent and patient vectors which are the SpriteSet vectors for the corresponding sprite classes. The property and

value vectors are bound together and added to produce the interaction vector (e.g., i3 = patient ⍟ c0 + agent ⍟ c3 + interaction

⍟ killObject). The vectors for different interactions are normalized to unit length and added together to produce the InteractionSet

vector, which is also normalized to unit length.

The TerminationSet is a set of exploitative goals (termination conditions) and exploratory goals. Each termination condition has a

type (e.g., counter), a sprite class, an outcome (e.g., loss), as well as any additional properties (e.g., count). Exploratory goals have

two sprite classes whose interaction is yet unobserved, as well as other optional properties. As with the InteractionSet, the base vec-

tors for properties and their values are drawn fromD-dimensional isotropic Gaussian distributions, with the exception of spite classes

whose vectors are the corresponding SpriteSet vectors. The property and value vectors are bound together and added to produce

the goal vector (e.g., t0 = type⍟ counter + sprite⍟ c0 + outcome⍟ loss). The values for different goals are normalized to unit length

and added together to produce the TerminationSet vector, which is also normalized to unit length.

The resulting SpriteSet, InteractionSet, and TerminationSet vectors are finally added to produce the theory vector, which is also

normalized to unit length. Following Plate,22 we chose the dimension D of the vectors as:

D = 3:16ðk � 0:25Þlnm

q3
z348 (Equation 15)

Where k = 10 is the number of stored vectors, m = 10 is the vocabulary size, and q = 0:05 is the probability of retrieval error.

For an intuitive example of HRRs, see Figure S1C. Notice that while individual HRR features aremeaningless by design (Figure S1C,

second panel), the similarity between HRR embeddings reflects their semantic similarity (Figure S1C, third panel), which is in turn

captured by the GP kernel (Figure S1C, fourth panel) and exploited by GP regression for prediction. For a real example of HRRs

for an actual participant and how they evolve over time, see Figure S2.

For the encoding model analysis using simplified object embeddings (Figure S4H), each sprite class had a single property whose

value could be either approach, avoid, or neutral, based on whether the avatar ought to approach, avoid, or not be concerned with

sprites of that class, respectively. The approach sprites were (for each game): scared (Chase); box1, box2, box3 (Helper); mushroom,

key, goal, box (Bait); goal, lemming (Lemmings); deadMolarInf, deadMolarSup, hotdog, burger (Plaque Attack); annoyed (Avoid

George); key, goal (Zelda). The avoid sprites were: angry (Chase); hole (Bait); hole (Lemmings); annoyed (Avoid George); monster-

Quick, monsterNormal, monsterSlow (Zelda). All other sprites were neutral. The rest of the theory embedding was generated as

described above.

Note that we are notmaking a strong commitment to HRRs as a neural code. Specifically, we are not testing the hypothesis that the

brain encodes theories in a form similar to HRRs; rather, we are using HRRs as a cognitively plausible theory embedding to construct

the theory similarity kernel K for our encoding model. We leave the question of theory coding as the topic of future work.
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Control models
We performed a similar encoding model analysis with 3 control models:

d DDQN, to account for model-free RL representations,

d PCA, to account for low-level visual representations,

d VAE, to account for higher-level state representations.

Deep RL networks (DQNs) have achieved human-level performance on Atari games2 and have been put forward as an account of

humanmodel-free RL in complex domains.9 Following Tsividis et al.,16 we used a double DQN (DDQN), which is a version of the orig-

inal DDQN with improved convergence properties.20 We ran the sequence of frames (scaled to 643 643 3), actions, and rewards

from each participant through DDQNs pre-trained for the corresponding games, as described above. Following Cross et al.,9 we per-

formed PCA on the resulting activations for each layer separately (except the output layer, which has only 6 units). This balances the

number of features for different layers and facilitates comparisons between DDQNs across games. For each frame, we concatenated

the top 100 principal components from all layers into a single 406-dimensional feature vector. The resulting feature vector sequences

were fed through the same analysis pipeline as the EMPA theory embeddings (Figure 3A).

Principal component analysis (PCA) has been used to explain brain activity in the visual pathway24,25 and has been utilized as a

control model for human RL in Atari games.9 We first extracted principal components from 430,000 randomly chosen frames (scaled

to 643 643 3) across all participants. We used the incremental PCA algorithm from the sklearn Python library with a batch size of

10,000.We then projected the frame sequence from each participant’s gameplay on to the top 100 principal components and fed the

resulting feature vectors through the same analysis pipeline as the EMPA theory embeddings.

Variational autoencoders (VAEs) extract a latent representation of an input space by learning to compress and then reconstruct

the input data using a deep neural network.26–28 VAEs have also been used as a control model for human RL in Atari games.9 We

used an open-source VAE implementation (https://medium.com/dataseries/variational-autoencoder-with-pytorch-2d359cbf027b).

The encoder had 3 convolutional layers (conv1: 8 filters with size = 333 and stride = 2; conv2: 16 filters with size = 33 3 and stride = 2;

conv3: 32 filters with size = 333 and stride = 2), followed by 2 fully connected layers (linear1: 128 units, linear2: 128), followed by the

bottleneck layer (latent: 128 units). The decoder had a correspondingly inverted architecture, with 2 fully connected layers followed

by 3 convolution transpose layers. The VAEwas trained bymaximizing the evidence lower bound (ELBO) on themarginal likelihood of

the training data. Aswith PCA, we trained on 430,000 random frames across all participants.We used batch size = 256 and trained for

1,000 epochs using the Adam optimizer with learning rate = 0.001 and weight decay = 10� 5. We then ran the frame sequence from

each participant’s gameplay through the VAE and used the bottleneck activations as the feature vectors which were fed through the

same analysis pipeline as the EMPA theory embeddings.

GLM analyses
To look for brain regions sensitive to theory updates, we employed a standard GLMapproach using SPM12 (Figure 4A). We created a

GLM with impulse regressors at time points when the theory inferred from EMPA changed (qtsqt� 1). We also included nuisance re-

gressors for visual andmotor confounds, variables relevant for theory updating, aswell asmotion estimates derived from realignment

and run-specific intercepts (Table S3). All regressors were convolved with the canonical hemodynamic response function. As in our

previous work,67 group-level statistical maps were thresholded at p< 0:001 and cluster FWE corrected at a = 0:05.

As with the encoding model, ROIs were extracted by cross-referencing the peak voxels from the group-level t-map (up to 3 peaks

peaks per cluster, minimum 20 voxels apart) with the AAL3 atlas.29 For our confirmatory analysis, we used all anatomical ROIs with an

average beta coefficient for theory updating which was significantly different from zero across participants (Figure S6). We generated

PETHs for a given participant and ROI by taking the 20-s (10 TRs) BOLD timecourse following every theory update event, averaged

across all voxels in the ROI, and subtracting a baseline BOLD signal averaged over the preceding 4 s (2 TRs) to obtain the change in

BOLD signal in response to theory updating. The resulting traces were averaged across theory update events and aggregated across

participants to obtain the final PETHs (Figure 4C). The same analysis was performed for the control events. To directly compare the

change in BOLD signal in response to different kinds of events (Figure 4D), we averaged the BOLD timecourse within the 20-s window

following each event before averaging across event instances and aggregating across participants.

To check if theory updating exhibits a monotonic trend over time, we performed a two-tailed Mann-Kendall test using the theory

update histogram averaged across all games (Figure S5A: All Games), downsampled to 1 Hz for ease of computation. We also per-

formed the same test using theory update histograms for individual games (Figure S5A, panels 1-7).

GLM comparison
To identify regions which are sensitive to different update events, we constructed 4 additional GLMs analogous to the theory update

GLM: 3 GLMs for single component updates (objects, relations, and goals, respectively) and a single GLM with separate regressors

for all three component updates (Figure 5A). Following our previous work,31,53 we compared GLMs using random effects

Bayesian model selection,32 a standard method for comparing models in fMRI studies.64 We approximated the log model evidence

as LME = -0.5 * BIC, where BIC is the Bayesian information criterion based on the maximum likelihood estimate of the GLM param-

eters. This quantifies how well the GLM fits the BOLD signal in the ROI for a given participant (penalizing for model complexity), with
Neuron 111, 1331–1344.e1–e8, April 19, 2023 e7
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lower values indicating a better fit. We report the protected exceedance probability (PXP), which is the posterior probability that a

given model is most prevalent in the population (Table 1).

Theory activation timecourse
We generated the overlap between our theory representation and theory updating t-maps by taking the voxels that were significant in

both group-level t-maps (Figure 6A). To generate PETHs with predictivity scores (Figure 6B) for a given ROI and participant, we first

obtained a predictivity timecourse by computing the Fisher z-transformed Pearson correlation between the predicted and actual

pattern of BOLD activity across voxels at each TR. We then proceeded in a similar fashion to the BOLD PETHs described above:

the 20-s predictivity timecourses following theory updates were baseline-subtracted (average of preceding 4 s), averaged across

theory update events, and aggregated across participants to obtain the PETHs. The same analysis was performed for the control

events. As with the BOLD PETHs, to directly compare the change in predictivity score in response to different kinds of events

(Figure 6C), we averaged the predictivity timecourse within the 20-s window following each event before averaging across event in-

stances and aggregating across participants. When performing this analysis for separate theory component updates (Figure S8), we

used predictivity scores from encoding models fit separately for objects, relations, and goals, respectively.

Effective connectivity
Following our previous work,53 we investigated the pattern of effective connectivity between brain regions during theory updating

using structural equation modeling.36,37,78 We constructed a beta series GLM with separate impulse regressors for individual theory

update events. Since the BOLD signal is highly autocorrelated, which violates the structural equationmodeling assumptions, we only

included events that are at least 10 s apart, using a rolling window starting from the first theory update event in each run. The resulting

beta coefficients are estimates of the instantaneous neural activity at each theory update event. For each ROI, we averaged the es-

timates across voxels. We searched the space of connectivity patterns using the IMaGES (independent multiple-sample greedy

equivalence search) algorithm36,37 from the TETRAD software package for causal modeling.38 IMaGES is a version of greedy equiv-

alence search79 (GES), which starts with an empty causal graph and greedily adds edges that improve the fit to the data according to

the BIC. IMaGES extends GES to multiple datasets (e.g., multiple fMRI participants) by averaging the BICs across datasets. To find

the effective connectivity pattern 2 s after theory updating, we performed the same analysis except with all theory updates shifted

back by 2 s.
e8 Neuron 111, 1331–1344.e1–e8, April 19, 2023
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Figure S1: Learning curves and holographic reduced representations (HRRs). Related to Figure 3A.
A. Human and model learning. Top, learning curves for humans (individual participants and mean), EMPA,
DDQN, and EMPA ablations. Bottom, learning curve linear coefficient estimates (histogram for humans, markers
for models). IR, intrinsic rewards; IW, iterative width planner optimization. Related to Figure 2C.
B. Illustration of HRRs. Related to Figure 3A.
C. Toy HRR example with four objects (first panel), the resulting HRR vectors (second panel), their correlations
(third panel) and Gaussian process (GP) kernel (fourth panel). Related to Figure 3A.
D. Example frames from human participant playing Chase for the first time and the corresponding EMPA theories
(top left inset) and theory update events (top right inset). Related to Figure 3A.
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Figure S2: EMPA theory embeddings over time for example participant. Related to Figure 3A.
A. Example HRR design matrix X for human participant. HRR, holographic reduced representations. TR, scanner
repetition time.
B. Corresponding Gaussian process (GP) kernel K.
C. t-SNE plot of design matrix in A, separated by game and colored by level and time within level (consecutive
TRs connected).

40



A

C

BGame identity EMPA, not controlling for game identity

EMPA, controlling for game identity

Figure S3: Controlling for game identity. Related to Figure 3B.
A. Group-level t-map from encoding model analysis using one-hot game identity feature vectors. Notation as in
Figure 3B.
B. Group-level t-map from theory encoding model (Figure 3A) without controlling for game identity.
C. Group-level t-map from theory encoding model (Figure 3A), controlling for game identity. Surface view corre-
sponding to slices from Figure 3B.
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Figure S4: Encoding model results with outliers visualized. Related to Figure 3C.
A. Fraction of voxels with significant correlation between predicted and actual BOLD for different models. Notation
and results as in Figure 3C, except with outliers visualized as dots.
B. Results from A aggregated across larger cortical areas.
C. Same as B, except for individual EMPA theory components (in addition to the theory itself, corresponding to
EMPA in B).
D. Analysis from B performed for each game separately and averaged across games.
E-F. Analysis from D separated by games that require more planning (E: Helper, Bait, Lemmings, Zelda) or less
planning (F: Chase, Plaque Attack, Avoid George).
G. Direct comparison between EMPA in E and EMPA in F.
H. Comparison between EMPA with full sprite attributes (corresponding to EMPA in B) vs. single approach/avoid
attribute.
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Theory update histograms (smoothed)
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Figure S5: EMPA theory updates. Related to Figure 4.
A. Theory update histograms averaged across subjects (timecourses smoothed with Gaussian filter with σ = 1 s),
separated by game. Levels denoted as l1, l2... l9. Colored fringes depict error bars (s.e.m.) across participants.
B. Same as A, except plotted separately for each level with appropriate rescaling of the y-axis.
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Figure S6: Beta coefficients from theory update GLM. Related to Figure 4. * - p < 0.05, ** - p < 0.01, *** -
p < 0.001, **** - p < 0.0001, ***** - p < 0.00001, ****** - p < 0.000001, ******* - p < 0.0000001 (two-sided
t-tests).
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Figure S7: Theory learning control analyses and breakdown by individual components. Related to Figure 4.
A. Group-level t-maps from GLM analysis for all data partitions. Surface view corresponding to slices from Fig-
ure 3B.
B. Group-level t-maps from GLM analysis for first data partition.
C. Group-level t-maps from GLM analysis for second data partition.
D. Group-level t-maps from GLM analysis for third data partition.
E. Peri-event time histograms showing the average change in BOLD signal following individual theory component
updates. Related to Figure 4C. Notation as in Figure 4C.
F. Change in BOLD signal from A averaged over 20 s following corresponding event. Related to Figure 4D. Notation
as in Figure 4D.
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Figure S8: Theory activation control analyses and breakdown by component updates. Related to Figure 6.
A. Comparing theory embedding (HRR) and theory update timecourses for single participant. Top, timecourses for
single run. Middle, PCA on theory embeddings. Bottom, Pearson correlation coefficient (left) and p-value (right)
between top theory embedding PCs and theory update signal. PC, principal component.
B. Analysis from A averaged across participants. z, Fisher z-transformed Pearson correlation coefficient.
C. PETHs showing average change in predictivity score in a priori ROIs. RSC, retrosplenial cortex. HC, hip-
pocampus. PHC, parahippocampal cortex. TPO, temporal pole. Notation as in Figure 6B.
D. Change in predictivity score from C averaged over 20 s following corresponding event. Notation as in Figure 6C.
E. PETHs in a posteriori ROIs for individual theory component updates. Notation as in Figure 6B.
F. Change in predictivity score from E averaged over 20 s following corresponding event. Notation as in Figure 6C.

46



Sign AAL3 region BA Extent T-stat MNI
Positive Fusiform gyrus (L) 37 6655 9.035 -36 -58 -14

Middle occipital gyrus (L) 19 6655 7.869 -32 -86 16
Superior occipital gyrus (L) 17 6655 7.374 -8 -100 12
Cuneus (R) 17 3088 7.004 18 -98 8
Fusiform gyrus (R) 37 3088 6.109 38 -52 -18
Middle occipital gyrus (R) 19 3088 5.231 38 -88 2
IFG pars triangularis (L) 48 1534 6.998 -36 24 22
IFG pars triangularis (L) 45 1534 6.497 -52 34 12
IFG pars triangularis (L) 1534 4.910 -26 48 34
Middle temporal gyrus (L) 22 422 5.417 -56 -32 8
Middle temporal gyrus (L) 22 422 4.141 -32 -38 8
Rolandic operculum (R) 48 452 5.238 40 -26 22
Supramarginal gyrus (R) 2 452 5.072 58 -30 30
Supramarginal gyrus (R) 3 452 4.615 36 -22 42
IFG pars opercularis (R) 44 384 5.207 42 8 30
IFG pars triangularis (R) 48 384 4.892 42 26 20
Precentral gyrus (R) 273 5.160 54 -12 54
Precentral gyrus (R) 6 273 4.559 34 -10 48
Cerebellum (R) 224 5.041 14 -82 -28
Cerebellum (R) 224 3.955 38 -74 -40
Supplementary motor area (L) 6 260 4.984 -8 18 64
Middle frontal gyrus (L) 9 260 4.682 -32 14 54
Precuneus (R) 5 288 4.840 8 -48 56
Postcentral gyrus (R) 3 288 4.756 28 -40 52
Postcentral gyrus (R) 1 288 3.613 28 -42 72
Middle occipital gyrus (R) 19 284 4.799 34 -66 36

Table S1: Theory representation clusters from encoding model t-map. Related to Figure 3. BA, Brodmann area.
T-stat, t-statistic in peak voxel in cluster. MNI, Montreal Neurological Institute coordinates of peak voxel in cluster.
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Regressor name Event Parametric modulator Durations
theory change flag theory updates 0 s
<game name> gameplay 180 s
up up keypress 0.05 s
down down keypress 0.05 s
left left keypress 0.05 s
right right keypress 0.05 s
spacebar action keypress 0.05 s
frames gameplay frame 0.05 s
new sprites gameplay frame number of new sprites 0.05 s
killed sprites gameplay frame number of killed sprites 0.05 s
sprites gameplay frame number of alive sprites 0.05 s
non walls gameplay frame number of non-wall squares 0.05 s
avatar moved gameplay frame whether the avatar moved 0.05 s
moved gameplay frame number of sprites that moved 0.05 s
movable gameplay frame number of non-static sprites 0.05 s
collisions gameplay frame number of observed collisions 0.05 s
effects gameplay frame number of observed effects 0.05 s
sprite groups gameplay frame number of sprite categories 0.05 s
changed gameplay frame number of changed squares 0.05 s
avatar collision flag gameplay frame whether the avatar was in a collision 0.05 s
effectsByCol gameplay frame number of unique effects by color 0.05 s
play start episode start 0 s
play end episode end 0 s

Table S2: Theory update GLM regressors. Related to Figure 4.

Sign AAL3 region BA Extent T-stat MNI
Positive Fusiform gyrus (R) 19 30340 13.628 32 -72 -16

Fusiform gyrus (L) 37 30340 13.306 -36 -52 -18
Fusiform gyrus (R) 37 30340 12.661 28 -44 -12
IFG pars triangularis (R) 48 2264 10.151 44 26 22
IFG pars triangularis (R) 6 2264 3.849 38 2 44
IFG pars triangularis (L) 48 1974 8.704 -40 14 26
IFG pars triangularis (L) 45 1974 7.999 -46 36 10
Middle cingulate & paracingulate gyri (R) 23 398 6.253 2 -34 30
Superior frontal gyrus, dorsolateral (R) 8 349 5.642 4 30 48
Anterior orbital gyrus (R) 47 283 5.096 32 36 -14

Negative Superior temporal gyrus (R) 22 390 -6.091 68 -20 6
Heschl’s gyrus (R) 48 390 -4.032 42 -22 10
Rolandic operculum (L) 48 345 -6.072 -38 -34 22
Precentral gyrus (L) 6 504 -4.838 -20 -28 52
Supplementary motor area (L) 6 504 -3.679 -10 0 64

Table S3: Theory updating clusters from GLM t-map. Related to Figure 4. Notation as in Table S1.
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    SpriteSet
        carcass > Immovable color=BLACK
        goat > stype=avatar
            angry  > Chaser cooldown=8 
color=GOLD
            scared > Fleeing cooldown=3 
color=RED
        avatar > MovingAvatar color=DARKBLUE
        wall > Immovable color=DARKGRAY

    InteractionSet
        angry   wall   > stepBack
        scared   wall   > stepBack
        angry scared > nothing
        scared scared > nothing
        angry angry > nothing
        carcass avatar > nothing
        avatar wall    > stepBack
        avatar angry > changeScore value=-1
        avatar  angry  > killSprite 
        carcass scared > killSprite
        scared avatar > changeScore value=1
        scared avatar  > transformTo 
stype=carcass
        scared carcass > transformTo 
stype=angry1

    TerminationSet
        SpriteCounter stype=scared win=True 
bonus=5
        SpriteCounter stype=avatar win=False
        Timeout limit=1200 win=False

    SpriteSet
        hole > Immovable color=BLUE
        avatar > MovingAvatar color=DARK-
BLUE
        mushroom > Immovable color=RED
        key > Resource color=ORANGE limit=1
        goal > Immovable color=GREEN
        box > Passive color=BROWN
        wall > Immovable color=DARKGRAY

    InteractionSet
        avatar wall > stepBack
        avatar hole > killSprite
        box avatar > bounceForward
        box wall > stepBack
        box box > stepBack
        box mushroom > undoAll
        hole box > killSprite
        hole box > changeScore value=1
        box hole > killSprite
        avatar key > changeScore value=1
        avatar key > changeResource 
resource=key value=1
        key avatar > killSprite
        goal avatar >killIfOtherHasMore 
resource=key limit=1
        avatar goal > stepBack
        mushroom avatar > changeScore 
value=1
        mushroom avatar > killSprite

    TerminationSet
        SpriteCounter stype=goal limit=0 
win=True bonus=10
        SpriteCounter stype=avatar limit=0 
win=False

Chase Bait

    SpriteSet
        avatar > MovingAvatar color=DARKBLUE 
cooldown=0
        mover > VGDLSprite
            chaser > Chaser
                chaser1 > stype=box1 color=ORANGE  
cooldown=12
                chaser2 > stype=box3 color=LIGHTBLUE 
cooldown=12
        wall > Immovable color=DARKGRAY
        forcefield > Passive color=PURPLE
        box > Passive
            box1 > color=WHITE
            box2 > color=GREEN
            box3 > color=YELLOW

    InteractionSet
        avatar wall > stepBack
        mover wall > stepBack
        box wall > stepBack
        rand wall > stepBack
        box3 avatar > bounceForward
        box1 avatar > bounceForward
        box1 box2 > stepBack
        box1 box1 > stepBack
        avatar chaser > nothing
        box2 avatar > killSprite
        box1 chaser > killSprite
        box1 rand > killSprite
        box1 box3 > nothing
        avatar box3 > nothing
        box3 chaser > killSprite
        box2 forcefield > nothing
        rand forcefield > stepBack
        forcefield rand > stepBack
        chaser forcefield > stepBack
        chaser wall > stepBack
        chaser box2 > stepBack
        missile EOS > wrapAround
        missile avatar > killSprite
        missile missile > reverseDirection
        mover mover > stepBack

    TerminationSet
        SpriteCounter stype=avatar  limit=0 win=False
        SpriteCounter stype=box1 limit=0 win=True

Helper

    SpriteSet
        hole   > Immovable color=LIGHTBLUE 
        shovel > Flicker color=BROWN limit=1 
singleton=True 
        entrance > SpawnPoint total=6 
cooldown=35 stype=lemming color=PURPLE 
        goal > Immovable color=GREEN 
        avatar  > ShootAvatar stype=shovel 
color=DARKBLUE
        lemming > Chaser  stype=goal speed=1 
cooldown=5 color=RED
        wall > Immovable color=DARKGRAY

    InteractionSet
        avatar hole  > killSprite 
 
avatar hole > changeScore value=-5
        lemming hole  > killSprite 
 lemming hole > changeScore 
value=-2
        avatar wall > stepBack
        lemming wall > stepBack
 avatar EOS > stepBack
        lemming EOS > stepBack
        wall shovel  > killSprite 
 wall shovel > changeScore 
value=-1
        lemming goal > killSprite 
 lemming goal > changeScore 
value=2

    TerminationSet
        SpriteCounter  stype=avatar  limit=0 
win=False
        MultiSpriteCounter stype1=entrance 
stype2=lemming limit=0 win=True bonus=10

  SpriteSet
    fullMolarInf > Immovable color=YELLOW
    fullMolarSup > Immovable color=RED
    deadMolarInf > Immovable color=GREEN
    deadMolarSup > Immovable color=BLUE

    avatar  > ShootAvatar stype=fluor color=DARKBLUE 
frameRate=8
    hotdog > Chaser speed=1 cooldown=8 stype=fullMolar-
Inf color=ORANGE
    burger > Chaser speed=1 cooldown=8 stype=fullMolar-
Sup color=BROWN
    hotdoghole > SpawnPoint color=LIGHTGRAY  stype=hot-
dog  prob=0.15 cooldown=8 total=3 color=PURPLE
    burgerhole > SpawnPoint color=LIGHTBLUE stype=burger  
prob=0.15 cooldown=8 total=3 color=PINK
    fluor > Missile color=LIGHTRED
    wall > Immovable color=DARKGRAY

  InteractionSet
    avatar wall > stepBack
    hotdog wall > stepBack
    burger wall > stepBack
    fluor hotdog > changeScore value=1
    fluor hotdog > killSprite
    hotdog fluor  > changeScore value=1
    hotdog fluor   > killSprite 
    fluor burger > changeScore value=1
    fluor burger > killSprite
    burger fluor  > changeScore value=1
    burger fluor   > killSprite
    fluor wall   > killSprite
    fullMolarInf hotdog > changeScore value=-3 
    hotdog fullMolarInf > killSprite
    fullMolarInf hotdog > transformTo stype=deadMolarInf
    fullMolarInf burger > changeScore value=-3
    burger fullMolarInf > killSprite
    fullMolarInf burger > transformTo stype=deadMolarInf
    deadMolarInf avatar > changeScore value=1
    deadMolarInf avatar > transformTo stype=fullMolarInf
    fullMolarSup hotdog > changeScore value=-3
    hotdog fullMolarSup > killSprite
    fullMolarSup hotdog > transformTo stype=deadMolarSup
    fullMolarSup burger > changeScore value=-3
    burger fullMolarSup > killSprite
    fullMolarSup burger > transformTo stype=deadMolarSup
    deadMolarSup avatar > changeScore value=1
    deadMolarSup avatar > transformTo stype=fullMolarSup

  TerminationSet
    MultiSpriteCounter stype1=fullMolarInf stype2=full-
MolarSup limit=0 win=False
    MultiSpriteCounter stype1=hotdoghole stype2=hotdog 
stype3=burger stype4=burgerhole limit=0 win=True 
bonus=10

Plaque Attack

  SpriteSet
    goal  > Immovable color=GREEN
    key   > Resource color=ORANGE limit=1
    sword > OrientedFlicker singleton=True color=WHITE
    avatar  > ShootAvatar   stype=sword frameRate=8 color=DARKBLUE
    enemy >
      monsterQuick > RandomNPC cooldown=6 cons=6 color=BROWN
      monsterNormal > RandomNPC cooldown=8 cons=8 color=PINK
      monsterSlow > RandomNPC cooldown=10 cons=12 color=GOLD
    wall > Immovable autotiling=true color=DARKGRAY

  InteractionSet
    avatar wall  > stepBack
    goal avatar  > killIfOtherHasMore resource=key limit=1
    monsterSlow sword > killSprite
    monsterQuick sword > killSprite
    monsterNormal sword > killSprite
    monsterSlow sword > changeScore value=2
    monsterQuick sword > changeScore value=2
    monsterNormal sword > changeScore value=2
    monsterSlow monsterSlow > stepBack
    monsterSlow monsterQuick > stepBack
    monsterSlow monsterNormal > stepBack
    monsterQuick monsterNormal > stepBack
    monsterNormal monsterNormal > stepBack
    monsterQuick monsterQuick > stepBack
    avatar monsterSlow > killSprite
    avatar monsterQuick > killSprite
    avatar monsterNormal > killSprite
    avatar monsterSlow > changeScore value=-1
    avatar monsterQuick > changeScore value=-1
    avatar monsterNormal > changeScore value=-1
    avatar key   > changeResource resource=key value=1
    avatar key   > changeScore value=1
    key avatar    > killSprite
    monsterQuick wall > stepBack
    monsterNormal wall > stepBack
    monsterSlow wall > stepBack

  TerminationSet
    SpriteCounter stype=goal   win=True bonus=10
    SpriteCounter stype=avatar win=False

Zelda

    SpriteSet
        annoyed > RandomNPC speed=0.25 cons=2 color=PURPLE        
        citizen >
            quiet > RandomNPC speed=0.25 cons=1 color=PINK
            avatar > ShootAvatar stype=cigarette  color=DARKBLUE
        george > Chaser stype=citizen color=YELLOW speed=0.15 frameRate=8
        cigarette > Flicker color=BROWN limit=5 rotateInPlace=False 
singleton=True 
        wall > Immovable color=DARKGRAY

    InteractionSet
        quiet george > transformTo stype=annoyed
        avatar george > changeScore value=-1
        avatar george > killSprite 
        annoyed cigarette > changeScore value=1
        annoyed cigarette > transformTo stype=quiet 
        annoyed wall > stepBack
        quiet wall > stepBack
        avatar wall > stepBack
        george wall > stepBack

    TerminationSet
        SpriteCounter stype=avatar  win=False
        SpriteCounter stype=quiet   win=False
        Timeout limit=400 win=True bonus=0.02

Avoid George

Lemmings

Red objects (scared) run away from the avatar (dark blue).
Gold objects (angry) run towards the avatar.
When the avatar touches a red object, the red object turns 
black and freezes (carcass) and the avatar gains a point.
When a red object touches a black object, the black object 
becomes a gold object.
With the avatar touches a gold object, the avatar dies and 
the game is lost.
When the avatar kills all red objects, the game is won.

Strategy: the avatar has to touch all the red objects while 
avoiding the gold objects.

Chase

When the avatar (dark blue) touches a box (brown), it pushes 
the box forward.
When the avatar touches a mushroom (red), the mushroom 
disappears and the avatar gains a point.
When a box touches a mushroom, all objects move to their 
previous position.
When the avatar touches a hole (blue), the avatar dies and the 
game is lost.
When a box touches a hole, the box disappears.
When the avatar touches the key (orange), it picks up the key.
When the avatar touches the goal (green) with the key, the 
game is won.

Strategy: the avatar has to pick up the key and reach the goal, 
avoiding holes and potentially moving boxes out of the way, 
pushing boxes into holes, and touching mushrooms.

Bait

Lemmings (red) run towards the goal (green).
The avatar (dark blue) has a shovel (brown).
When a lemming touches a hole (light blue), the lemming dies 
and the avatar loses 2 points.
Lemmings cannot go through walls (dark grey).
When a lemming reaches the goal (green), the lemming 
disappears and the avatar gains 2 points.
When the shovel touches a wall, the wall disappears and the 
avatar loses 1 point.
When the avatar touches a hole, the avatar dies.
When all lemmings disappear, the game is won.

Strategy: the avatar has to clear the path of the lemmings to the 
goal, destroying as few walls as possible and avoiding holes.

Lemmings

Hot dogs (orange) chase inferior molars (yellow).
Burgers (brown) chase superior molars (red).
The avatar (dark blue) can shoot fluoride (light red).
When a hot dog touches a molar, it turns into a dead molar and the avatar loses 
3 points.
When a burger touches a molar, it turns into a dead molar and the avatar loses 3 
points.
When fluoride touches a hot dog, they disappear and the avatar gains a point.
When fluoride touches a burger, they disappear and the avatar gains a point.
When the avatar touches a dead molar, it revives it and the avatar gains a point.
When all the molars are dead, the game is lost.
When all the hot dogs and burgers are dead, the game is won.

Strategy: the avatar has to shoot all the hot dogs and burgers before they kill all 
the molars, reviving as many molars as possible on the way.

Plaque Attack

Chaser1 (orange) chases box1 (white).
Chaser2 (light blue) chases box3 (yellow).
When chaser1 touches box1, box1 disappears.
When chaser2 touches box3, box3 disappears.
When the avatar (dark blue) touches box2, box2 disappears.
The forcefield (purple) repels all objects, except box2 (green).
The avatar can push box1 and box3.
When the avatar touches box2, the box disappears.
When all box1’s are gone, the game is won.

Strategy: the avatar has to help the chaser1’s destroy all the box1’s

Helper

There are slow (gold), normal (pink), and quick (brown) monsters that move around 
randomly.
The avatar (dark blue) has a sword (white).
When a monster touches the avatar, the avatar dies and the game is lost.
When the avatar touches the key (orange), it picks it up.
When the avatar touches the goal and the avatar has a key, the game is won.
When the sword touches a monster, the monster dies and the avatar gains a point.

Strategy: the avatar should pick up the key and reach the goal, avoiding and potentially 
killing monsters on the way.

Zelda

Annoyed (purple) and quiet (pink) objects move around randomly.
George (yellow) chases quiets and the avatar (dark blue).
The avatar can shoot a cigarette (brown).
When George touches the avatar, the avatar dies and the game is lost.
When George touches a quiet, the quiet becomes annoyed and the avatar loses a point.
When the cigarette touches an annoyed, it becomes quiet and the avatar gains a point.
When all quiets become annoyed, the game is lost.

Strategy: avatar has to keep turning annoyeds into quiets while avoiding George.

Avoid George

Table S4: Game descriptions in VGDL (top) and natural language (bottom), together with winning strategies and
examples screenshots. Related to Figure 2.
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